【題目】已知函數(shù), 其中,
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值及的單調(diào)區(qū)間;
(2)若對(duì)任意的, 使得恒成立,且,求實(shí)數(shù)的取值范圍.
【答案】(1)或;(2)
【解析】試題分析:(1)求導(dǎo),先利用求得值,再進(jìn)行驗(yàn)證;(2)先將問題轉(zhuǎn)化為對(duì)任意的 時(shí),都有,先分別利用導(dǎo)數(shù)求出兩個(gè)函數(shù)的最值,要注意分類討論思想的應(yīng)用.
試題解析:(1),其定義域?yàn)?/span>,
;又是函數(shù)的極值點(diǎn),
,即,
或;
經(jīng)檢驗(yàn), 或時(shí), 是函數(shù)的極值點(diǎn),
或;
(2)假設(shè)存在實(shí)數(shù),對(duì)任意的, 都有成立,
等價(jià)于對(duì)任意的 時(shí),都有,
當(dāng)時(shí), .
函數(shù)在上是減函數(shù).
.
,且, ,
①當(dāng)且時(shí), ,
函數(shù)在上是增函數(shù).
.
由,得,又,
不合題意.
②當(dāng)時(shí),若,則,
若,則,
函數(shù)在上是減函數(shù),在上是增函數(shù).
,得, .
綜上,存在實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,關(guān)于的方程有三個(gè)不同的實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )
A. y與x具有正的線性相關(guān)關(guān)系
B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè),則為該統(tǒng)計(jì)量中的估計(jì)值
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列方程,并回答問題:
①;②;③;④;…
(1)請(qǐng)你根據(jù)這列方程的特點(diǎn)寫出第個(gè)方程;
(2)直接寫出第2009個(gè)方程的根;
(3)說(shuō)出這列方程的根的一個(gè)共同特點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若和在區(qū)間上具有時(shí)間的單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若,且函數(shù)的最小值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)求證: 不是上的奇函數(shù);
(2)若是上的單調(diào)函數(shù),求實(shí)數(shù)的值;
(3)若函數(shù)在區(qū)間上恰有3個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>為的導(dǎo)函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com