在(x-1)(x+1)8的展開式中,x5的系數(shù)是
14
14
分析:將求x5的系數(shù)問題轉化為二項式(x+1)8的展開式的x4的系數(shù)減去x5的系數(shù),即可求出展開式中x5的系數(shù)
解答:解:∵(x-1)(x+1)8=x(x+1)8-(x+1)8
∴(x-1)(x+1)8展開式中x5的系數(shù)等于(x+1)8展開式的x4的系數(shù)減去x5的系數(shù),
∵(x+1)8展開式的通項為Tr+1=
C
r
8
xr

∴展開式中x5的系數(shù)是C84-C85=14,
故答案為:14.
點評:本題考查二項式定理的應用,考查利用二項展開式的通項公式解決二項展開式的指定項問題,考查學生的轉化能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點處的切線方程是y=5x-10.
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)g(x)=f(x)+
13
mx,若g(x)的極值存在,求實數(shù)m的取值范圍以及函數(shù)g(x)取得極值時對應的自變量x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、在(x-1)(x+1)8的展開式中x5的系數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列幾個命題:
①函數(shù)y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是減函數(shù);
②已知f(x)在R上是增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b);
③已知函數(shù)y=f(x)是R上的奇函數(shù),且當x≥0時,f(x)=x(1+
3x
)
,則當x<0時,f(x)=-x(1-
3x
)
;
④已知定義在R上函數(shù)f(x)滿足對?x,y∈R,f(x+y)=f(x)+f(y),且當x>0時,f(x)>0,則f(x)是R上的增函數(shù);⑤如果a>1,則函數(shù)f(x)=ax-x-a(a>0且a≠1)有兩個零點.
其中正確命題的序號是
 
.(寫出全部正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(x+1)(x-1)6展開式中x5的系數(shù)是
9
9

查看答案和解析>>

同步練習冊答案