若隨機向一個邊長為2的正三角形內(nèi)丟一粒豆子,則豆子落在此三角形內(nèi)切圓內(nèi)的概率為( 。
A、
3
π
3
B、
π
9
C、
3
π
9
D、1
考點:幾何概型
專題:概率與統(tǒng)計
分析:點A在此正三角形的內(nèi)切圓的內(nèi)部的概率就是內(nèi)切圓的面積與正三角形面積的比.
解答: 解:∵如圖所示的正三角形,邊長為2,
∴∠CAB=60°,
∴AB=1,
∵⊙O是內(nèi)切圓,
∴∠OAB=30°,∠OBA=90°,
∴BO=tan30°AB=
3
6
×2=
3
3
,
則正三角形的面積是
3
×22
4
=
3
,而圓的半徑是OB,面積是π(
3
3
)2=
1
3
π,
因此概率是
1
3
π
3
=
3
π
9

故選:C.
點評:本題主要考查幾何概型中的面積類型,基本方法是:分別求得構(gòu)成事件A的區(qū)域面積和試驗的全部結(jié)果所構(gòu)成的區(qū)域面積,兩者求比值,即為概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某外商計劃在5個候選城市投資3個不同的項目,且在同一個城市投資的項目不超過2個,則該外商不同的投資方案有( 。
A、60種B、70種
C、80種D、120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:f(x)=-f(x+
3
2
),f(-1)=1,則f(1)+f(2)+f(3)+…+f(2008)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P點是曲線y=x3-
3
x+
2
3
上的任意一點,P點處切線傾斜角為α,則角α的取值范圍是( 。
A、[0,
π
2
)∪[
2
3
π,π)
B、[0,
π
2
)∪[
5
6
π,π)
C、[
2
3
π,π)
D、(
π
2
,
5
6
π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
x-y+1≥0
x+y-1≥0
3x-y-3≤0
,則函數(shù)z=x2+y2取最小值時,x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式-x2+5x+6≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(2cos2x+sin2x)+b(a>0)
(1)求f(x)的最小正周期T;
(2)若x∈[0,
π
4
]時,f(x)的值域是[1,
2
],求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a>1,實數(shù)x,y滿足
x+y≤1
x+2y≥1
x-2y≥-2
,則z=ax+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={ x||x-2|≤3},B={ x|x<t},若A∩B=φ,則實數(shù)t的取值范圍是( 。
A、t<-1B、t>5
C、t≤-1D、t≥5

查看答案和解析>>

同步練習(xí)冊答案