已知正項(xiàng)數(shù)列{an}滿足a1=
1
2
,且an+1=
an
1+an

(1)證明數(shù)列{
1
an
}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)求證:
a1
2
+
a2
3
+
a3
4
+…+
an
n+1
<1
分析:(1)由已知得an+1an=an-an+1,兩邊同除以an+1an得出
an+1
-
1
an
=1,判斷出{
1
an
}為等差數(shù)列,先求出{
1
an
} 的通項(xiàng)公式,再求出{an}的通項(xiàng)公式.
 (2)由(1)應(yīng)得出
an
n+1
=
1
(n+1)2
1
n
-
1
n+1
,放縮裂項(xiàng)后,對(duì)不等式左邊化簡(jiǎn)整理再與1比較,進(jìn)行證明.
解答:解:(1)由已知得an+1an=an-an+1an
兩邊同除以an+1an得出
an+1
-
1
an
=1,
∴數(shù)列{
1
an
}為公差為1的等差數(shù)列,且首項(xiàng)為
1
a1
=2
根據(jù)等差數(shù)列的通項(xiàng)公式可得
1
an
=2+(n-1)=n+1
an=
1
n+1

(2)證明:∵
an
n+1
=
1
(n+1)2
1
n
-
1
n+1

 
a1
2
+
a2
3
+
a3
4
+…+
an
n+1
1
2×1
+
1
3×2
+
1
4×3
+…+
1
(n+1)n
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=1-
1
n+1
<1
點(diǎn)評(píng):本題考查等差數(shù)列的判定,通項(xiàng)公式求解,考查變形構(gòu)造、計(jì)算能力,以及不等式的證明.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數(shù)列{
an
2n+1
}
為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)an
(2)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項(xiàng)和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:稱
n
a1+a2+…+an
為n個(gè)正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n
,則
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列an中,a1=2,點(diǎn)(
an
an+1)
在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(diǎn)(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數(shù)列bn的前項(xiàng)和.(n∈N+).
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)記Tn為數(shù)列{
1
log2bn+1log2bn+2
}
的前n項(xiàng)和,是否存在實(shí)數(shù)a,使得不等式Tn<log0.5(a2-
1
2
a)
對(duì)?n∈N+恒成立?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數(shù)列;
(2)若bn=
1
2
an-30
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案