已知橢圓:()上任意一點到兩焦點距離之和為,離心率為,左、右焦點分別為,,點是右準線上任意一點,過作直 線的垂線交橢圓于點.
(1)求橢圓的標準方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點的縱坐標為3,過作動直線與橢圓交于兩個不同點,在線段上取點,滿足,試證明點恒在一定直線上.
(1);(2)證明詳見解析;(3)證明詳見解析.
【解析】
試題分析:(1)利用橢圓的定義、離心率的定義、的關(guān)系列出方程組,解得的值;(2)由右準線方程設(shè)出點坐標,由垂直的充要條件得,表達出,將點代入橢圓中,即,代入中,化簡得常數(shù);(3)設(shè)出點,代入橢圓方程中,設(shè),由得向量關(guān)系,得到與的關(guān)系,據(jù)與及與系數(shù)比為2:3,得在直線.
試題解析:(1)由題意可得,解得,,,
所以橢圓:. 2分
(2)由(1)可知:橢圓的右準線方程為,
設(shè),
因為PF2⊥F2Q,所以,
所以,
又因為且代入化簡得.
即直線與直線的斜率之積是定值. 7分.
(3)設(shè)過的直線l與橢圓交于兩個不同點,點
,則,.
設(shè),則,
∴,,
整理得,,,
∴從而,
由于,,∴我們知道與的系數(shù)之比為2:3,與的系數(shù)之比為2:3.
∴,
所以點恒在直線上. 13分
考點:1.橢圓的定義;2.離心率的定義;3.垂直的充要條件.
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
1 |
2 |
| ||
2 |
1 |
yP |
1 |
yQ |
1 |
y1 |
1 |
y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PM |
MQ |
FG |
1 |
2 |
FH |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:青島一模 題型:解答題
PM |
MQ |
FG |
1 |
2 |
FH |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年山東省青島市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com