【題目】如圖,橢圓C:(a>b>0)的離心率為
,其左焦點到點P(2,1)的距離為
.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求ABP的面積取最大時直線l的方程.
【答案】(Ⅰ) ;(Ⅱ)
.
【解析】(Ⅰ)由題:; (1)
左焦點(﹣c,0)到點P(2,1)的距離為:. (2)
由(1) (2)可解得:.∴所求橢圓C的方程為:
.
(Ⅱ)易得直線OP的方程:y=x,設(shè)A(xA,yA),B(xB,yB),R(x0,y0).其中y0=
x0.
∵A,B在橢圓上,
∴.
設(shè)直線AB的方程為l:y=﹣(m≠0),
代入橢圓:.
顯然.
∴﹣<m<
且m≠0.
由上又有:=m,
=
.
∴|AB|=|
|=
=
.
∵點P(2,1)到直線l的距離為:.
∴SABP=
d|AB|=
,其中﹣
<m<
且m≠0.
利用導(dǎo)數(shù)解:令,
則
當(dāng)m=時,有(S
ABP)max.
此時直線l的方程
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將各位數(shù)字和為8的全體正整數(shù)按自小到大的順序排成一個數(shù)列,稱為P數(shù)列.則2015為其中第________項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把編號為1,2,3,4的四個大小、形狀相同的小球,隨機放入編號為1,2,3,4的四個盒子里.每個盒子里放入一個小球.
(1)求恰有兩個球的編號與盒子的編號相同的概率;
(2)設(shè)小球的編號與盒子編號相同的情況有種,求隨機變量
的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有大小相同的小球個,在小球上分別標(biāo)有1,2,3…,
的號碼,已知從盒子中隨機取出兩個球,兩球號碼的最大值為
的概率為
.
(Ⅰ)盒子中裝有幾個小球?
(Ⅱ)現(xiàn)從盒子中隨機地取出4個球,記所取4個球的號碼中,連續(xù)自然數(shù)的個數(shù)的最大值為隨機變量(如取標(biāo)號分別為2,4,6,8的小球時
;取標(biāo)號分別為1,2,4,6的小球時
;取標(biāo)號分別為1,2,3,5的小球時
),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的有( )
A.向量與
是共線向量,則點
、
、
、
必在同一條直線上
B.若且
,則角
為第二或第四象限角
C.函數(shù)是周期函數(shù),最小正周期是
D.中,若
,則
為鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)是
的極值點.求
,并求
的單調(diào)區(qū)間;
(2)證明:當(dāng)時,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中
為常數(shù)且
)在
處取得極值.
(1)當(dāng)時,求
的極大值點和極小值點;
(2)若在
上的最大值為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若都是從集合
中任取的一個數(shù),求函數(shù)
有零點的概率;
(2)若都是從區(qū)間
上任取的一個數(shù),求
成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為1的正方體中,點
在
上移動,點
在
上移動,
,連接
.
(1)證明:對任意,總有
平面
;
(2)當(dāng)為何值時,
的長度最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com