(本題滿分18分,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分)
已知函數(shù),如果存在給定的實(shí)數(shù)對(duì)(),使得恒成立,則稱為“S-函數(shù)”.
(1)判斷函數(shù)是否是“S-函數(shù)”;
(2)若是一個(gè)“S-函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對(duì);
(3)若定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209591089068570/SYS201205221001212812460409_ST.files/image007.png">的函數(shù)是“S-函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(duì)和,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209591089068570/SYS201205221001212812460409_ST.files/image012.png">,求當(dāng)時(shí)函數(shù)的值域.
(1)是
(2) 滿足是一個(gè)“S-函數(shù)”的常數(shù)(a, b)=
(3)
【解析】解:(1)若是“S-函數(shù)”,則存在常數(shù),使得 (a+x)(a-x)=b.
即x2=a2-b時(shí),對(duì)xÎR恒成立.而x2=a2-b最多有兩個(gè)解,矛盾,
因此不是“S-函數(shù)”.………………………………………………3分
若是“S-函數(shù)”,則存在常數(shù)a,b使得,
即存在常數(shù)對(duì)(a, 32a)滿足.
因此是“S-函數(shù)”………………………………………………………6分
(2)是一個(gè)“S-函數(shù)”,設(shè)有序?qū)崝?shù)對(duì)(a, b)滿足:
則tan(a-x)tan(a+x)=b恒成立.
當(dāng)a=時(shí),tan(a-x)tan(a+x)= -cot2(x),不是常數(shù).……………………7分
因此,,
則有.
即恒成立. ……………………………9分
即,
當(dāng),時(shí),tan(a-x)tan(a+x)=cot2(a)=1.
因此滿足是一個(gè)“S-函數(shù)”的常數(shù)(a, b)=.…12分
(3) 函數(shù)是“S-函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(duì)和,
于是
即,
,.……………………14分
.………16分
因此, …………………………………………17分
綜上可知當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209591089068570/SYS201205221001212812460409_DA.files/image003.png">.……………18分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線對(duì)稱, 當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆上海市崇明中學(xué)高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對(duì)于數(shù)列,如果存在一個(gè)正整數(shù),使得對(duì)任意的()都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡(jiǎn)稱周期。例如當(dāng)時(shí)是周期為的周期數(shù)列,當(dāng)時(shí)是周期為的周期數(shù)列。
(1)設(shè)數(shù)列滿足(),(不同時(shí)為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,且.
①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列滿足(),,,,數(shù)列的前項(xiàng)和為,試問是否存在,使對(duì)任意的都有成立,若存在,求出的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對(duì)于數(shù)列,如果存在一個(gè)正整數(shù),使得對(duì)任意的()都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡(jiǎn)稱周期。例如當(dāng)時(shí)是周期為的周期數(shù)列,當(dāng)時(shí)是周期為的周期數(shù)列。
(1)設(shè)數(shù)列滿足(),(不同時(shí)為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,且.
①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列滿足(),,,,數(shù)列 的前項(xiàng)和為,試問是否存在,使對(duì)任意的都有成立,若存在,求出的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市十三校高三上學(xué)期第一次聯(lián)考試題文科數(shù)學(xué) 題型:解答題
(本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)
已知函數(shù),其中.
(1)當(dāng)時(shí),設(shè),,求的解析式及定義域;
(2)當(dāng),時(shí),求的最小值;
(3)設(shè),當(dāng)時(shí),對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項(xiàng)和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項(xiàng)公式,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com