【題目】當(dāng)向量 = =(﹣2,2), =(1,0)時(shí),執(zhí)行如圖所示的程序框圖,輸出的i值為(
A.5
B.4
C.3
D.2

【答案】B
【解析】解:模擬程序運(yùn)行,有
i=1時(shí), =(﹣1,2),不滿足條件ac=0
i=2時(shí), =(0,2),不滿足條件ac=0
i=3時(shí), =(1,2),不滿足條件ac=0
i=4時(shí), =(﹣2,2),滿足條件ac=0
退出循環(huán),輸出i的值為4.
故選:B.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線C:y2=nx(n>0)在第一象限內(nèi)的點(diǎn)P(2,t)到焦點(diǎn)的距離為 ,曲線C在點(diǎn)P處的切線交x軸于點(diǎn)Q,直線l1經(jīng)過點(diǎn)Q且垂直于x軸.
(Ⅰ)求線段OQ的長;
(Ⅱ)設(shè)不經(jīng)過點(diǎn)P和Q的動(dòng)直線l2:x=my+b交曲線C于點(diǎn)A和B,交l1于點(diǎn)E,若直線PA,PE,PB的斜率依次成等差數(shù)列,試問:l2是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,且過點(diǎn) .若點(diǎn)M(x0 , y0)在橢圓C上,則點(diǎn) 稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比不等于1的等比數(shù)列{an},滿足:a3=3,S3=9,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2 , 若cn= , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.曲線C1的極坐標(biāo)方程為ρ﹣2cosθ=0,曲線C1的參數(shù)方程為(t是參數(shù),m是常數(shù))
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C2與C1有兩個(gè)不同的公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1 , x2 , (x1<x2),求證:1<x1<a<x2<a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,過點(diǎn)的直線與橢圓交于兩點(diǎn).

1若直線的斜率為1, ,求橢圓的標(biāo)準(zhǔn)方程;

21中橢圓的右頂點(diǎn)為,直線的傾斜角為,問為何值時(shí),取得最大值,并求出這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊答案