直線l過(guò)拋物線C:x2=4y的焦點(diǎn)且與y軸垂直,則l與C所圍成的圖形的面積等于( )

A. B.2 C. D.

 

C

【解析】∵拋物線方程為x2=4y,∴其焦點(diǎn)坐標(biāo)為F(0,1),故直線l的方程為y=1.如圖所示,可知l與C圍成的圖形的面積等于矩形OABF的面積與函數(shù)y=x2的圖象和x軸正半軸及直線x=2圍成的圖形的面積的差的2倍(圖中陰影部分的2倍),即S=4-2=4-2·=4-

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考蘇教數(shù)學(xué)(理)訓(xùn)練10 對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:填空題

函數(shù)y=loga(x-1)+1(a>0,且a≠1)的圖像恒過(guò)定點(diǎn)A,若點(diǎn)A在一次函數(shù)y=mx+n的圖像上,其中m,n>0,則的最小值為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破四 高考立體幾何(解析版) 題型:解答題

如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°.

(1)證明:平面PAB與平面PCD的交線平行于底面;

(2)求cos∠COD.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破六 高考概率與統(tǒng)計(jì)(解析版) 題型:選擇題

某班級(jí)有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問(wèn)了該班五名男生和五名女生在某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī),五名男生的成績(jī)分別為86,94,88,92,90,五名女生的成績(jī)分別為88,93,93,88,93.下列說(shuō)法一定正確的是( )

A.這種抽樣方法是一種分層抽樣

B.這種抽樣方法是一種系統(tǒng)抽樣

C.這五名男生成績(jī)的方差大于這五名女生成績(jī)的方差

D.該班男生成績(jī)的平均數(shù)小于該班女生成績(jī)的平均數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破五 高考解析幾何(解析版) 題型:解答題

已知⊙O′過(guò)定點(diǎn)A(0,p)(p>0),圓心O′在拋物線C:x2=2py(p>0)上運(yùn)動(dòng),MN為圓O′在x軸上所截得的弦.

(1)當(dāng)O′點(diǎn)運(yùn)動(dòng)時(shí),|MN|是否有變化?并證明你的結(jié)論;

(2)當(dāng)|OA|是|OM|與|ON|的等差中項(xiàng)時(shí),試判斷拋物線C的準(zhǔn)線與圓O′的位置關(guān)系,并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破二 高考三角函數(shù)與平面向量(解析版) 題型:解答題

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sin B(tan A+tan C)=tan Atan C.

(1)求證:a,b,c成等比數(shù)列;

(2)若a=1,c=2,求△ABC的面積S.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破二 高考三角函數(shù)與平面向量(解析版) 題型:填空題

已知|a|=1,|b|=2,a與b的夾角為60°,則a+b在a方向上的投影為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破一 高考函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+ln x.

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;

(3)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西省西安市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)若方程有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案