【題目】已知F1 , F2分別為雙曲線 ﹣ =1(a>0,b>0)的左右焦點,如果雙曲線上存在一點P,使得F2關(guān)于直線PF1的對稱點恰在y軸上,則該雙曲線的離心率e的取值范圍為( )
A.e>
B.1<e<
C.e>
D.1<e<
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形ABC中,AB=AC=4,點P是邊AB邊上異于AB的一點,光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖),若光線QR經(jīng)過△ABC的重心,則AP等于( )
A.2
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0),直線y=x+ 與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1 , F2為其左右焦點,P為橢圓C上的任意一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2 .
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點,直線∫過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M為△ABC的中線AD的中點,過點M的直線分別交兩邊AB、AC于點P、Q,設(shè)
=x , ,記y=f(x).
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)設(shè)g(x)=x3+3a2x+2a,x∈[0,1].若對任意x1∈[ ,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S﹣ABC中,M是SC的中點,且AM⊥SB,底面邊長AB=2 ,則正三棱錐S﹣ABC的體積為 , 其外接球的表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)氣象部門預(yù)報,在距離碼頭A南偏東45°方向400千米B處的臺風(fēng)中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風(fēng)中心為圓心,距臺風(fēng)中心100 千米以內(nèi)的地區(qū)都將受到臺風(fēng)影響.據(jù)以上預(yù)報估計,從現(xiàn)在起多長時間后,碼頭A將受到臺風(fēng)的影響?影響時間大約有多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),數(shù)學(xué)成績分組及樣本頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合計 | ③ | ④ |
(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué),已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com