三棱錐中,分別是棱的中點,,,,,則異面直線所成的角為                           (   )
A.B.C.D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖一,平面四邊形關(guān)于直線對稱,
沿折起(如圖二),使二面角的余弦值等于.對于圖二,
(Ⅰ)求;
(Ⅱ)證明:平面
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如左圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:
(1)求二面角B-AC-D的大;
(2)在線段AC上是否存在一點E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 如圖,在三棱錐中,,的中點.
(1)求證:;
(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
等邊和梯形所在的平面相互垂直,,,為棱的中點,∥平面.

(I)求證:平面平面;
(II)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在直三棱柱中,.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題10分)
如圖,在多面體中,四邊形是正方形,,,,
,.
(1)求二面角的正切值;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:在四棱錐中,底面是菱形,平面,
、分別為、的中點,
(I)證明:平面;
(II)在線段上是否存在一點,使得平面;若存在,求出的長;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點。
(1)求四棱錐P-ABCD的體積;
(2)若點E為PC的中點,,求證EO//平面PAD;
(3)是否不論點E在何位置,都有BD⊥AE?證明你的結(jié)論。

查看答案和解析>>

同步練習冊答案