已知雙曲線
x2
m
-
y2
7
=1
,直線L過其左焦點F1,交雙曲線左支于A、B兩點,且|AB|=4,F(xiàn)2為右焦點,△ABF2的周長為20,則m=
 
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線的性質(zhì)推導(dǎo)出△ABF2的周長=|AF2|+|BF2|+2|AB|,由此能求出結(jié)果.
解答: 解:∵雙曲線
x2
m
-
y2
7
=1
,直線L過其左焦點F1
交雙曲線左支于A、B兩點,且|AB|=4,F(xiàn)2為右焦點,
|AF2 |-|AF1|=2
m

|BF2|-|BF1|=2
m
,
∴|AF2|+|BF2|=4
m
+|AF1|+|BF1|=4
m
+4,
∵△ABF2的周長為20,
∴|AF2|+|BF2|+|AB|=20,
∴4
m
+4+4=20,
解得m=9.
故答案為:9.
點評:本題考查雙曲線的性質(zhì)的應(yīng)用,是中檔題,解題時要熟練掌握雙曲線的簡單性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求直線y=x+
3
2
被曲線y=
1
2
x2截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)圓臺與圓柱、圓錐之間的相互聯(lián)系?
(2)一只有30°的直角三角析繞其各邊旋轉(zhuǎn)所得幾何體的是圓錐嗎?如果以斜邊上的高所在的直線為軸旋轉(zhuǎn)180°旋轉(zhuǎn)所得什么圖形?旋轉(zhuǎn)360°所得又是什么圖形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式組
x-1≥a2
x-4<2a
有解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=4x的焦點是F,準(zhǔn)線是l,則經(jīng)過點F、M(4,4)且與l相切的圓共有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=x2(x>0)在點(a,f(a))處的切線與兩條坐標(biāo)軸圍成的三角形的面積為54,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1
(a>b>0),點A為其上任意一點,左右焦點為F1,F(xiàn)2,若|AF1|,|F1F2|,|AF2|成等差數(shù)列,則此橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義差集:A-B={x|x∈A且x∉B}.設(shè)函數(shù)y=x+1-
x-2
的值域為C,則用列舉法表示差集:N-C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(0,+∞)上的增函數(shù),當(dāng)n∈N*時,有f(n)∈N*,f[f(n)]=3n,則f(1)+f(2)=
 

查看答案和解析>>

同步練習(xí)冊答案