雙曲線C與橢圓
x2
8
+
y2
4
=1有相同的焦點(diǎn),直線y=
3
x為C的一條漸近線.求雙曲線C的方程.
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,反證法
分析:求出橢圓的焦點(diǎn)坐標(biāo);據(jù)雙曲線的系數(shù)滿足c2=a2+b2;雙曲線的漸近線的方程與系數(shù)的關(guān)系列出方程組,求出a,b,寫出雙曲線方程.
解答: 解:設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0)(1分)
由橢圓
x2
8
+
y2
4
=1,求得兩焦點(diǎn)為(-2,0),(2,0),(3分)
∴對(duì)于雙曲線C:c=2.(4分)
又y=
3
x為雙曲線C的一條漸近線,
b
a
=
3
                                                 (6分)
解得a=1,b=
3
,(9分)
∴雙曲線C的方程為x2-
y2
3
=1
.(10分)
點(diǎn)評(píng):本題考查利用待定系數(shù)法求圓錐曲線的方程其中橢圓中三系數(shù)的關(guān)系是:a2=b2+c2;雙曲線中系數(shù)的關(guān)系是:c2=a2+b2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,2an+1=2an+1,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y2=2x(y≥0),A1(x1,y1),A2(x2,y2),…An(xn,yn)…是曲線C上的點(diǎn),且滿足0<x1<x2<…<xn<…,一列點(diǎn)Bi(ai,0)(i=1,2,…)在x軸上,且△Bi-1AiBi(B0是坐標(biāo)原點(diǎn))是以Ai為直角頂點(diǎn)的等腰直角三角形.
(Ⅰ)求A1、B1的坐標(biāo);
(Ⅱ)求數(shù)列{yn}的通項(xiàng)公式;
(Ⅲ)令bi=
1
a
,ci=
(
2
)-yi
2
,是否存在正整數(shù)N,當(dāng)n≥N時(shí),都有
n
i=1
bi
n
i=1
ci
,若存在,求出N的最小值并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
n-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2
n
an
,數(shù)列{
2
cncn+2
}的前n項(xiàng)和為Tn,求滿足Tn
25
21
(n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件求圓錐曲線的標(biāo)準(zhǔn)方程.
(1)已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(2,0),(-2,0),并且經(jīng)過點(diǎn)(
5
2
,-
3
2
);
(2)離心率是e=
2
,經(jīng)過點(diǎn)M(-5,3)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(xy)=f(x)+f(y)
(1)求f(8)的值;
(2)解不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
b
滿足(2
a
-3
b
)•(2
a
+
b
)=3
(Ⅰ)求
a
b
;
(Ⅱ)求|2
a
-
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正偶數(shù)排列如圖所示,其中第i行第j個(gè)數(shù)表示aij(i∈N*).例如a32=10,若
aij=2014,則i+j=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
1
x
)=x+
1+x2
(x<0),則函數(shù)f(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案