如圖,在三棱柱A1B1C1-ABC中,D,E,F分別是AB,AC,AA1的中點(diǎn),設(shè)三棱錐F-ADE的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1V2=    .

設(shè)三棱柱的底面ABC的面積為S,三棱柱的高為h,則其體積為V2=Sh.因?yàn)镈,E分別為AB,AC的中點(diǎn),所以△ADE的面積等于S,又因?yàn)镕為AA1的中點(diǎn),所以三棱錐F-ADE的高等于h,于是三棱錐F-ADE的體積V1=×h=

Sh=V2,故V1∶V2=1∶24.

答案:1∶24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,每個(gè)側(cè)面均是邊長為2的正方形,D為底邊AB的中點(diǎn),E為側(cè)棱CC1的中點(diǎn),AB1與A1B的交點(diǎn)為O.
(Ⅰ)求證:CD∥平面A1EB;
(Ⅱ)求點(diǎn)A到平面A1EB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,點(diǎn)D是BC上一點(diǎn),且AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)求證:A1B∥平面ADC1;
(3)求二面角C-AC1-D大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,D為BC中點(diǎn).
(Ⅰ)求證:A1B∥平面ADC1;
(Ⅱ)求證:C1A⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AB⊥AC,頂點(diǎn)在A1底面ABC上的射影恰為點(diǎn)B,且AB=AC=A1B=2.
(1)求證:A1C1⊥平面ABA1B1
(2)求棱AA1與BC所成的角的大;
(3)在線段B1C1上確定一點(diǎn)P,使AP=
14
,并求出二面角P-AB-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC=A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大。
(2)在棱B1C1上確定一點(diǎn)P,使二面角P-AB-A1的平面角的余弦值為
3
10
10

查看答案和解析>>

同步練習(xí)冊答案