(本小題滿分14分)
已知
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,設(shè)關(guān)于的方程的兩個(gè)根為,若對(duì)任意
,,不等式恒成立,求的取值范圍.

解:(1) y=  ;(2) ;(3)。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線方程為
(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)函數(shù) 
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)拋物線經(jīng)過點(diǎn)、,
其中,,設(shè)函數(shù)處取到極值.
(1)用表示;
(2) 比較的大。ㄒ蟀磸男〉酱笈帕校
(3)若,且過原點(diǎn)存在兩條互相垂直的直線與曲線均相切,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

時(shí)下,網(wǎng)校教學(xué)越來越受到廣大學(xué)生的喜愛,它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價(jià)格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為4元/套時(shí),每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價(jià)格的值,使網(wǎng)校每日銷售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知函數(shù)f(x)=lnx,g(x)=(a≠0)
(1)若b=2,且h(x)=f(x)-g(x)在定義域上不單調(diào),求a的取值范圍;
(2)若a=1,b=-2設(shè)f(x)的圖象C1與g(x)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)作x軸的垂線分別交C1,C2于點(diǎn)M、N,M、N的橫坐標(biāo)是m,求證:f'(m)<g'(m)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的圖像在處的切線方程;
(2)設(shè)實(shí)數(shù),求函數(shù)上的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案