已知函數(shù)(是常數(shù))在處的切線方程為,且.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.
(Ⅰ),,;(Ⅱ)實(shí)數(shù)的取值范圍是;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)求常數(shù)的值,由函數(shù)(是常數(shù))在處的切線方程為,只需對(duì)求導(dǎo),讓它的導(dǎo)數(shù)在處的值即為切線的斜率,這樣能得到的一個(gè)關(guān)系式,由,代入函數(shù)中,又得到的一個(gè)關(guān)系式,因?yàn)槿齻(gè)參數(shù),需再找一個(gè)關(guān)系式,,注意到在切線上,可代入切線方程得到的一個(gè)關(guān)系式,三式聯(lián)立方程組即可,解此類題,關(guān)鍵是找的關(guān)系式,有幾個(gè)參數(shù),需找?guī)讉(gè)關(guān)系式;(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),即它的導(dǎo)函數(shù)在區(qū)間內(nèi)不恒正或恒負(fù),即在區(qū)間內(nèi)有極值點(diǎn),而,只要在區(qū)間內(nèi)有解,從而轉(zhuǎn)化為二次函數(shù)根的分布問題,分兩種情況:在區(qū)間內(nèi)有一解,在區(qū)間內(nèi)有兩解,結(jié)合二次函數(shù)圖像,從而求出實(shí)數(shù)的取值范圍;(Ⅲ)證明:,注意到 ,只需證明在上即可,即,而,只需證明在上即可,而,即,只需證在上為減函數(shù),這很容易證出,此題構(gòu)思巧妙,考查知識(shí)點(diǎn)多,學(xué)科知識(shí)點(diǎn)融合在一起,的確是一個(gè)好題,起到把關(guān)題作用.
試題解析:(Ⅰ)由題設(shè)知,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/e/cxrz1.png" style="vertical-align:middle;" />,, 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/56/9/1gu5r3.png" style="vertical-align:middle;" />在處的切線方程為,所以,且,即,且, 又 ,解得,,,
(Ⅱ)由(Ⅰ)知, 因此,,
所以,令. (。┊(dāng)函數(shù)在內(nèi)有一個(gè)極值時(shí),在內(nèi)有且僅有一個(gè)根,即在內(nèi)有且僅有一個(gè)根,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/a/1vyew2.png" style="vertical-align:middle;" />,當(dāng),即時(shí),在內(nèi)有且僅有一個(gè)根,當(dāng)時(shí),應(yīng)有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)>0)
(1)若的一個(gè)極值點(diǎn),求的值;
(2)上是增函數(shù),求a的取值范圍
(3)若對(duì)任意的總存在>成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知R,函數(shù)e.
(1)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)存在極大值,并記為,求的表達(dá)式;
(3)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) (為實(shí)常數(shù))
(1)當(dāng)時(shí),求函數(shù)在上的最大值及相應(yīng)的值;
(2)當(dāng)時(shí),討論方程根的個(gè)數(shù)
(3)若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(m為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導(dǎo)數(shù).
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點(diǎn)坐標(biāo)和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2時(shí),f(x)≤kg(x),求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在處有極值,求的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實(shí)數(shù),使在區(qū)間的最小值是3,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com