函數(shù)f(x)=
ax2+(2a-1)x+
1
4
的定義域為R,且記f(x)的最小值為g(a),則當(dāng)a變化時,函數(shù)g(a)的值域為
 
考點:函數(shù)的值域,函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過配方法將函數(shù)的被開方數(shù)寫成二次函數(shù)的頂點式,求出y的最小值為g(a),借助a的范圍求出g(a)的值域.
解答: 解:依題意,當(dāng)x∈R時,ax2+(2a-1)x+
1
4
恒成立.當(dāng)a=0時,x∉R,
∴a≠0,
a>0
(2a-1)2-4a×
1
4
≤0

解得,
1
4
≤a≤1
,
∴f(x)=
ax2+(2a-1)x+
1
4
=
a(x-1+
1
2a
)2+
1
4
-
(2a-1)2
4a

∴ymin=
1
4
-
(2a-1)2
4a

因此,g(a)=
1
4
-
(2a-1)2
4a
=
5
4
-(4a+
1
4a
)
5
4
+2
4a•
1
4a
=
13
2
,當(dāng)且僅當(dāng)a=
1
4
取等號,
故函數(shù)g(a)的值域為[0,
13
2
]
故答案為:[0,
13
2
]
點評:本題考查偶次根式的定義域的求解,考查不等式恒成立問題的解決辦法,關(guān)鍵要進(jìn)行等價轉(zhuǎn)化,利用基本不等式求值域是本題的另一個命題點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i(m∈R,i是虛數(shù)單位).
(1)若復(fù)數(shù)z為純虛數(shù),求m的值;
(2)若復(fù)數(shù)z對應(yīng)的點在第三象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-4x+3 ,x≤0
-x2-2x+3,x>0
,則不等式f(a2-4)>f(3a)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設(shè)Sn是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③在三角形△ABC中,若sinA>sinB,恒有A>B;
④對于任意正實數(shù)x,若sinx>0,y=sinx+
2
sinx
,則y的最小值為2
2

其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(sinx)=sin3x,則f(cos75°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①x=0是函數(shù)y=x3+1的極值點;
②三次函數(shù)f(x)=ax3+bx2+cx+d有極值點的充要條件是b2-3ac>0;
③奇函數(shù)f(x)=mx3+(m-1)x2+48(m-2)x+n在區(qū)間(4,+∞)上是遞增的;
④曲線y=ex在x=1處的切線方程為y=ex.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點F與雙曲線
x2
12
-
y2
4
=1的一個焦點重合,直線y=x-4與拋物線交于A,B兩點,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個單位向量
a
,
b
的夾角為θ,且θ∈(
π
6
,
π
3
),則
a
+
b
與λ
b
(λ>0)夾角的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合u={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么點P(2,3)∈A∩(∁UB)的充要條件是
 

查看答案和解析>>

同步練習(xí)冊答案