已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別為等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)數(shù)列{cn}對(duì)n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

 

(1)an=2n-1 bn=3n-1

(2)32014

【解析】【解析】
(1)∵a2=1+d,a5=1+4d,a14=1+13d,

∴(1+4d)2=(1+d)(1+13d),解得d=2(∵d>0).

則an=1+(n-1)×2=2n-1.

又b2=a2=3,b3=a5=9,

∴等比數(shù)列{bn}的公比q==3.

∴bn=b2qn-2=3×3n-2=3n-1.

(2)由+…+=an+1得

當(dāng)n≥2時(shí),+…+=an,

兩式相減,得=an+1-an=2,

∴cn=2bn=2×3n-1(n≥2).

而當(dāng)n=1時(shí),=a2,∴c1=3.

∴cn=

∴c1+c2+c3+…+c2014

=3+2×31+2×32+…+2×32013

=3+

=3-3+32014

=32014.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:解答題

設(shè)a≠0,對(duì)于函數(shù)f(x)=log3(ax2-x+a),

(1)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;

(2)若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:填空題

在數(shù)列{an}中,a1=2,an+an+1=1(n∈N*),設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,則S2007-2S2006+S2005的值為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)Tn=Sn- (n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若=3,則=(  )

A.2 B. C. D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an= (n≥2),則數(shù)列{an}的通項(xiàng)公式為an=(  )

A.n-1 B.n C.2n-1 D.2n

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足=3n-2.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:選擇題

投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:選擇題

已知點(diǎn)A(1,-2),若向量與向量a=(2,3)同向,且||=,則點(diǎn)B的坐標(biāo)為(  )

A.(2,3) B.(-2,3) C.(3,1) D.(3,-1)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案