將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象上所有點向右平移
π
6
個單位后得到的圖象關(guān)于原點對稱,則φ等于
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,可得結(jié)論.
解答: 解:將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象上所有點向右平移
π
6
個單位后,
得到的圖象對應(yīng)的函數(shù)解析式為y=sin[2(x-
π
6
)+φ]=sin(2x+φ-
π
3
);
再根據(jù)所得圖象關(guān)于原點對稱,可得函數(shù)y=sin(2x+φ-
π
3
)為奇函數(shù),故有φ-
π
3
=kπ,k∈z.
再根據(jù)0<φ<π,可得φ=
π
3
,
故答案為:
π
3
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,AC=2
2
,PA=2,E,F(xiàn)是PC上的兩點,PE=2EC,CF=2FP,連AF.
(Ⅰ)證明:AF∥平面BDE;
(Ⅱ)證明:PC⊥平面BED;
(Ⅲ)設(shè)二面角A-PB-C為90°,判斷BC與平面PAB是否垂直,并求棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2a≤x<a+3},B={x|2x
1
2
log
1
5
x<-1}.
(1)若a=-1,求A∪B;(∁RA)∩B;
(2)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個幾何體三視圖的正視圖和側(cè)視圖為邊長為2銳角60°的菱形,俯視圖為正方形,則此幾何體的內(nèi)切球表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={α|2kπ<α<2kπ+
π
2
,k∈Z},N={β|-10<β<10},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在[0,+∞)上的增函數(shù),比較下面的大小關(guān)系,f(a2+a+1)
 
f(
3
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x+y≤4
y-x≥0
x-1≥0
,則z=
y
x
的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-cosx
sinx
圖象的對稱中心是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=5log23.4,b=5log43.6,c=(
1
5
)
log43.6
,則( 。
A、a>b>c
B、b>a>c
C、a>c>b
D、c>a>b

查看答案和解析>>

同步練習(xí)冊答案