(滿分15分)本題有2小題,第1小題6分,第2小題9分.
如圖,在直角梯形中,,,,.將(及其內(nèi)部)繞所在的直線旋轉(zhuǎn)一周,形成一個(gè)幾何體.
(1)求該幾何體的體積;
(2)設(shè)直角梯形繞底邊所在的直線旋轉(zhuǎn)角()至,問(wèn):是否存在,使得.若存在,求角的值,若不存在,請(qǐng)說(shuō)明理由.
解:(1)如圖,作,則由已知,得,….2分
所以, ………………….………………….4分
(2)【解一】如圖所示,以為原點(diǎn),分別以線段、所在的直線為軸、軸,通過(guò)點(diǎn),做垂直于平面的直線為軸,建立空間直角坐標(biāo)系.…….1分
由題意,得,,,, ………2分
,
若,則,.…….…….…….…….…………. .4分
得,與矛盾, …….…….…….…….………….…….…………. .1分
故,不存在,使得. …….…….…….…….………….…….…………. .1分
【解二】取的中點(diǎn),連,,則(或其補(bǔ)角)就是異面直線所成的角. …….…….…….…….………….…….……….…….………….…….…………. .1分
在中,,, .3分
.…….………….…………. .2分
,.…….….…….…………. .2分
故,不存在,使得. …….…….…….…….………….…………. .1分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(滿分15分)本題有2小題,第1小題7分,第2小題8分.
如右圖,圓柱的軸截面為正方形,、分別為上、下底面的圓心,為上底面圓周上一點(diǎn),已知,圓柱側(cè)面積等于.
(1)求圓柱的體積;
(2)求異面直線與所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(滿分15分)本題有2小題,第1小題6分,第2小題9分.
如圖,在直角梯形中,,,,.將(及其內(nèi)部)繞所在的直線旋轉(zhuǎn)一周,形成一個(gè)幾何體.
(1)求該幾何體的體積;
(2)設(shè)直角梯形繞底邊所在的直線旋轉(zhuǎn)角()至,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(滿分15分)本題有2小題,第1小題6分,第2小題9分.
如圖,在直角梯形中,,,,.將(及其內(nèi)部)繞所在的直線旋轉(zhuǎn)一周,形成一個(gè)幾何體.
(1)求該幾何體的體積;
(2)設(shè)直角梯形繞底邊所在的直線旋轉(zhuǎn)角()至,問(wèn):是否存在,使得.若存在,求角的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(滿分15分)本題有2小題,第1小題9分,第2小題6分.
如圖,平面上定點(diǎn)到定直線的距離,曲線是平面上到定點(diǎn)和到定直線的距離相等的動(dòng)點(diǎn)的軌跡.
設(shè),且.
(1)若曲線上存在點(diǎn),使得,
試求直線與平面所成角的大。
(2)對(duì)(1)中,求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com