在平面直角坐標(biāo)系xOy中,A(1,0),B(2,0)是兩個(gè)定點(diǎn),曲線C的參數(shù)方程為
x=2+cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(1,0)為極點(diǎn),|
AB
|為長(zhǎng)度單位,射線AB為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.[來(lái).
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程,參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:(I)利用cos2θ+sin2θ=1可得可把曲線C的參數(shù)方程
x=2+cosθ
y=sinθ
(θ為參數(shù))消去參數(shù)化為直角坐標(biāo)方程;
(II)由建立極坐標(biāo)系的方法可得曲線C的極坐標(biāo)方程為ρ=2cosθ.
解答: 解:(I)曲線C的參數(shù)方程
x=2+cosθ
y=sinθ
(θ為參數(shù))消去參數(shù)可得(x-2)2+y2=1.
(II)以A(1,0)為極點(diǎn),|
AB
|為長(zhǎng)度單位,射線AB為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=2cosθ.
點(diǎn)評(píng):本題考查了把參數(shù)方程化為直角坐標(biāo)方程、直角坐標(biāo)化為極坐標(biāo)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果扇形圓心角的弧度數(shù)為2,圓心角所對(duì)的弦長(zhǎng)也為2,那么這個(gè)扇形的面積是( 。
A、
1
sin21
B、
2
sin21
C、
1
sin22
D、
2
sin22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M={0,1,2,4,5,8},N={0,2,3,5},則N∩M=( 。
A、{1,3}
B、{1,4,8}
C、{0,2,5}
D、{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的周長(zhǎng)為8,C(0,0),B(2,0),過(guò)B的直線與∠CAB的外角平分線垂直,且交AC的延長(zhǎng)線于M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C是△ABC的三個(gè)內(nèi)角,若
1+sin2B
cos2B-sin2B
=2+
3
,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,四邊形BCC1B1是邊長(zhǎng)為4的正方形,直線AB與平面ACC1A1所成角的正切值為2,點(diǎn)D為棱AA1上的動(dòng)點(diǎn).
(I)當(dāng)點(diǎn)D為何位置時(shí),CD⊥平面B1C1D?
(II)當(dāng)AD=2
2
時(shí),求二面角B1-DC-C1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C1,拋物線C2的焦點(diǎn)均在x軸上,C1的中心與C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取一個(gè)點(diǎn),將其坐標(biāo)記錄如下:
x1
2
3
23
y2
2
2
242
6
則在C1和C2上點(diǎn)的個(gè)數(shù)分別是( 。
A、1,4B、2,3
C、4,1D、3,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,D是BC的中點(diǎn),E是AC的三等分點(diǎn),且EC=2AE,若
AB
=
c
,
AC
=
b
,則
BE
=
 
,(結(jié)果用
c
,
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程||z-2|-|z-2||=a表示等軸雙曲線,則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案