已知數(shù)列及其前項(xiàng)和滿足: (,).
(1)證明:設(shè),是等差數(shù)列;
(2)求;
(3)判斷數(shù)列是否存在最大或最小項(xiàng),若有則求出來,若沒有請(qǐng)說明理由.

(1)見解析;(2) ,;(3)數(shù)列有最小項(xiàng),無最大項(xiàng),最小項(xiàng)為

解析試題分析:(1)直接求出,從而證明是等差數(shù)列;(2)先由(1)可得,然后由,注意檢驗(yàn)當(dāng)時(shí)是否適用 .(3)先判定數(shù)列是遞增數(shù)列,從而確定只有最小項(xiàng)無最大項(xiàng),最小項(xiàng)為,注意運(yùn)用函數(shù)的思想方法解決數(shù)列問題.
試題解析:(1)    ∴ )    2分
設(shè) 則是公差為1的等差數(shù)列          3分
(2) 又   ∴   ∴         5分
當(dāng)時(shí),                  7分
滿足上式                                  8分
                9分
(3)           11分
 ,則數(shù)列為遞增數(shù)列        12分
∴數(shù)列有最小項(xiàng),無最大項(xiàng),此時(shí)最小項(xiàng)為     13分 
考點(diǎn):1.等差數(shù)列的判定;2.等差數(shù)列通項(xiàng)公式的求法;3.數(shù)列的單調(diào)性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足:, , 
(Ⅰ)求,并求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}前2n項(xiàng)和為,當(dāng)取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差.且分別是等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意自然數(shù)均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(1)求;
(2)已知數(shù)列的第n項(xiàng)為,若成等差數(shù)列,且,設(shè)數(shù)列的前項(xiàng)和.求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,公差,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1公比為3 的等比數(shù)列,求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知an是一個(gè)等差數(shù)列,且a2=18,a14=—6.
(1)求an的通項(xiàng)an
(2)求an的前n項(xiàng)和Sn的最大值并求出此時(shí)n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,.的前n項(xiàng)和為.
(Ⅰ)求 及
(Ⅱ)若 ,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列、滿足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}的前n項(xiàng)和,數(shù)列{}滿足=
(I)求證:數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案