已知數(shù)列的前項(xiàng)和為,且;數(shù)列中,點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前和為,求;
(1)(2)

試題分析:(1)求數(shù)列的通項(xiàng)公式用公式法即可推導(dǎo)數(shù)列為等比數(shù)列,根據(jù)等比數(shù)列通項(xiàng)公式可求。求的通項(xiàng)公式也用公式法,根據(jù)已知條件可知數(shù)列為等差數(shù)列,根據(jù)等差數(shù)列的通項(xiàng)公式可直接求得。(2)用列項(xiàng)相消法求和。
試題解析:解:(1)∵,
∴當(dāng)時(shí), …2分
所以,即
∴數(shù)列是等比數(shù)列.
,∴
.                 5分
∵點(diǎn)在直線上,
,
即數(shù)列是等差數(shù)列,
,∴.…7分
(2)由題意可得,∴,            9分
,…10分
.         14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.已知an+1=2Sn+2()
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列,
①在數(shù)列{dn}中是否存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng),若不存在,說明理由;
②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的相鄰兩項(xiàng),是關(guān)于方程的兩根,且.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和
(3)設(shè)函數(shù),若對任意的都成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足anSn+1(n∈N*);
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若,cn,且{cn}的前n項(xiàng)和為Tn,求使得 對n∈N*都成立的所有正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=xa的圖象過點(diǎn)(4,2),令an,n∈N*.記數(shù)列{an}的前n項(xiàng)和為Sn,則S2 013=(  )
A.-1B.-1
C.-1 D.+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{cn}的通項(xiàng)cn=(2n-1)·,則數(shù)列{cn}的前n項(xiàng)和Rn=(  )
A.1-B.1-C.1+D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)數(shù)列,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和。已知數(shù)列是等和數(shù)列,且,公和為5,那么這個(gè)數(shù)列的前21項(xiàng)和       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列的通項(xiàng)公式,則該數(shù)列的前_________項(xiàng)之和等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列中,已知,則前項(xiàng)和為,則的值為__________.

查看答案和解析>>

同步練習(xí)冊答案