在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點(diǎn)分別為,是橢圓上異于的任一點(diǎn),直線分別交軸于點(diǎn),證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.
(1);(2);(3)存在點(diǎn)滿足題意,點(diǎn)的坐標(biāo)為, 的面積為.
【解析】
試題分析:(1)由題目給出的條件直接列關(guān)于的方程組求解的值,則橢圓方程可求;(2)由橢圓方程求出橢圓上下頂點(diǎn)的坐標(biāo),設(shè)出橢圓上的動(dòng)點(diǎn),由直線方程的兩點(diǎn)式寫出直線的方程,取后得到和的長度,結(jié)合點(diǎn)在橢圓上整體化簡運(yùn)算可證出為定值;(3)假設(shè)存在點(diǎn),使得直線與圓,相交于不同的兩點(diǎn),且的面積最大,由點(diǎn)在橢圓上得到關(guān)于和的關(guān)系式,由點(diǎn)到直線的距離公式求出原點(diǎn)到直線的距離,由圓中的半徑,半弦長和弦心距之間的關(guān)系求出弦長,寫出的面積后利用基本不等式求面積的最大值,利用不等式中等號成立的條件得到關(guān)于和的另一關(guān)系式,聯(lián)立后可求解的坐標(biāo).
試題解析:
(1)由題意:,解得:
所以橢圓
(2) 由(1)可知,設(shè),
直線:,令,得;
直線:,令,得;
則,
而,所以,
所以
(3)假設(shè)存在點(diǎn)滿足題意,則,即
設(shè)圓心到直線的距離為,則,且
所以
所以
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041804324265621583/SYS201404180433498906397724_DA.files/image042.png">,所以,所以
所以
當(dāng)且僅當(dāng),即時(shí),取得最大值
由,解得
所以存在點(diǎn)滿足題意,點(diǎn)的坐標(biāo)為
此時(shí)的面積為.
考點(diǎn):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的簡單幾何性質(zhì),考查了直線和圓錐曲線的關(guān)系,直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com