【題目】某校夏令營有3名男同學3名女同學,其年級情況如下表:


一年級

二年級

三年級

男同學

A

B

C

女同學

X

Y

Z

現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同)

用表中字母列舉出所有可能的結果

為事件選出的2人來自不同年級且恰有1名男同學和1名女同學,求事件發(fā)生的概率.

【答案】(1)15,(2)

【解析】

試題(1)列舉事件,關鍵是按一定順序,做到不重不漏.6名同學中隨機選出2人參加知識競賽的所有可能結果為

{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15.(2)為事件選出的2人來自不同年級且恰有1名男同學和1名女同學,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6.因此,事件發(fā)生的概率

試題解析:解(1)從6名同學中隨機選出2人參加知識競賽的所有可能結果為{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15.(2)選出的2人來自不同年級且恰有1名男同學和1名女同學的所有可能結果為{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6.因此,事件發(fā)生的概率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】南北朝時期杰出的數(shù)學家祖沖之的兒子祖暅在數(shù)學上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高(

A.有最小值B.有最大值C.有最小值D.有最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為:為參數(shù)),直線與曲線分別交于、兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)求線段的長和的積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點務極點,軸正半軸為極軸建立極坐標系,曲線,

(1)求曲線的直角坐標方程;

(2)曲線的交點為,求以為直徑的圓與軸的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,|PQ|=|PA|成立,如圖.

(1)ab間的關系;

(2)|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有兩個題目,該學生答對兩題的概率分別為、,兩題全部答對方可進入面試.面試要回答甲、乙兩個問題,該學生答對這兩個問題的概率均為,至少答對一個問題即可被聘用,若只答對一問聘為職員,答對兩問聘為助理(假設每個環(huán)節(jié)的每個題目或問題回答正確與否是相互獨立的).

1)求該學生被公司聘用的概率;

2)設該學生應聘結束后答對的題目或問題的總個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務A必須排在前三項執(zhí)行,且執(zhí)行任務A之后需立即執(zhí)行任務E,任務B、任務C不能相鄰,則不同的執(zhí)行方案共有( )

A. 36種B. 44種C. 48種D. 54種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底,為常數(shù)且

(1)當時,討論函數(shù)在區(qū)間上的單調性;

(2)當時,若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在矩形中,,點為線段中點,如圖3所示,將沿著翻折至(點不在平面內),記線段中點為,若三棱錐體積的最大值為,則線段長度的最大值為___.

查看答案和解析>>

同步練習冊答案