【題目】設(shè)拋物線的對(duì)稱軸是軸,頂點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線與拋物線交于、兩點(diǎn)(和都不與重合),且,求證:直線過定點(diǎn)并求出該定點(diǎn)坐標(biāo).
【答案】(1);(2)證明見解析;直線恒過點(diǎn).
【解析】
(1)設(shè),將點(diǎn)代入方程求解即可;
(2)當(dāng)時(shí)顯然不成立;當(dāng)時(shí)聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理得到及的關(guān)系,由可得,代入即可得到與的關(guān)系,進(jìn)而得到定點(diǎn);當(dāng)不存在時(shí),聯(lián)立直線方程與拋物線方程,同理運(yùn)算即可
解:(1)因?yàn)閽佄锞的對(duì)稱軸是軸,設(shè)拋物線的標(biāo)準(zhǔn)方程為,
因?yàn)閽佄锞經(jīng)過點(diǎn)所以,所以,
所以設(shè)拋物線的標(biāo)準(zhǔn)方程為
(2)證明:當(dāng)直線的斜率存在且時(shí),顯然直線與拋物線至多只有一個(gè)交點(diǎn),不符合題意;
當(dāng)直線的斜率存在且時(shí),設(shè)直線的方程為,
聯(lián)立,消去,得①;
消去,得②;
設(shè),則為方程①的兩根,為方程②的兩根,
,
因?yàn)?/span>,所以,
因?yàn)?/span>,所以,
即,
所以,即,
所以直線的方程可化為,
當(dāng)時(shí),無論取何值時(shí),都有,所以直線恒過點(diǎn),
當(dāng)直線的斜率不存在時(shí),設(shè)直線的方程為,
把與聯(lián)立得,
則,
因?yàn)?/span>,
所以,即,得,
所以直線的方程為,
所以直線過點(diǎn),
綜上,無論直線的斜率存在還是不存在,直線恒過點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年開始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.
(1)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如表是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;
(2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再從這9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
附參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語文中回文句,如:“黃山落葉松葉落山黃,西湖垂柳絲柳垂湖西.”,倒過來讀完全一樣,數(shù)學(xué)中也有類似現(xiàn)象,無論從左往右讀,還是從右往左讀,都是同一個(gè)數(shù),稱這樣的數(shù)為“回文數(shù)”!二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個(gè);三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個(gè);四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,999,共90個(gè);五位的回文數(shù)有10001,11111,12221,…,96669,97779,98889,99999共900個(gè),由此推測(cè):10位的回文數(shù)總共有_______個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓.
(1)若直線過點(diǎn)且在兩坐標(biāo)軸上截距之和等于,求直線的方程;
(2)設(shè)是圓上的動(dòng)點(diǎn),求(為坐標(biāo)原點(diǎn))的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于、兩點(diǎn),為坐標(biāo)原點(diǎn),軸上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)設(shè)為橢圓上非長(zhǎng)軸頂點(diǎn)的任意一點(diǎn),為線段上一點(diǎn),若與的內(nèi)切圓面積相等,求證:線段的長(zhǎng)度為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)是否存在負(fù)實(shí)數(shù)a,使,函數(shù)有最小值-3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】排一張5個(gè)獨(dú)唱和3個(gè)合唱的節(jié)目單,如果合唱不排兩頭,且任何兩個(gè)合唱不相鄰,則這種事件發(fā)生的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組(只需寫出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com