(本小題滿分12分)
已知是邊長為2的等邊三角形,平面,,是上一動點(diǎn).
(1)若是的中點(diǎn),求直線與平面所成的角的正弦值;
(2)在運(yùn)動過程中,是否有可能使平面?請說明理由.
(1)解:取AC中點(diǎn)E,AP的中點(diǎn)F,連結(jié)FE、BE、則FE∥PC,BE A C
∴FE面ABC
建立如圖所示的空間直角坐標(biāo)系,則
A(0,-1,0) B(,0,0) C(0,1,0) P (0,1,) F (0,1,) …………2分
設(shè)是平面PBC的法向量,,則=0,且=0,∴且
取=-1,=-,=0,則 …………4分
由題設(shè)是的中點(diǎn),則D與F重合,即D的坐標(biāo)為(0,1,)
∴
…………6分
∴直線BD與面PBC所成角正弦值為 …………7分(2)(0,2,) (-,1,0) …………9分
20 ∴AP不垂直于BC
∴AP不可能垂直于面DBC,即不存在D點(diǎn),使AP面DBC …………12分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,頂點(diǎn)在底面內(nèi)的射影恰好落在的中點(diǎn)上,又,且
(1)求證:;
(2)若,求直線與所成角的余弦值;
(3)若平面與平面所成的角為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,為等邊三角形,且點(diǎn)F為棱BE上的動點(diǎn)。
(I)若DE//平面AFC,試確定點(diǎn)F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點(diǎn),求證:平面A1EF∥平面B1MC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖8,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面互相垂直,如圖9.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本題14分)已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量為一組鄰邊的平行四邊形的面積S;
⑵若向量分別與向量垂直,且=,求向量的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
點(diǎn)P(-1,1)關(guān)于直線的對稱點(diǎn)是Q(3,-1),則、的值依次是( )
A.-2,2 | B.2,-2 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
[2014·長春三校調(diào)研]一次函數(shù)y=-x+的圖象同時(shí)經(jīng)過第一、三、四象限的必要不充分條件是( )
A.m>1,且n<1 | B.mn<0 |
C.m>0,且n<0 | D.m<0,且n<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com