(2012•海淀區(qū)二模)已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=a4+6,且a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1Sn
}的前n項(xiàng)和公式.
分析:(Ⅰ)利用S3=a4+6,且a1,a4,a13成等比數(shù)列,建立方程,求得首項(xiàng)與公差,可得數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)確定數(shù)列{
1
Sn
}的通項(xiàng),利用裂項(xiàng)法,可求數(shù)列的和.
解答:解:(Ⅰ)設(shè)公差為d,且d≠0,
∵S3=a4+6,且a1,a4,a13成等比數(shù)列
∴3a1+3d=a1+3d+6,(a1+3d)2=a1(a1+12d)
∴a1=3,d=2
∴an=3+2(n-1)=2n+1;
(Ⅱ)Sn=
n(3+2n+1)
2
=n(n+2),∴
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴數(shù)列{
1
Sn
}的前n項(xiàng)和為
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3n2+5n
4(n+1)(n+2)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查裂項(xiàng)法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)已知點(diǎn)F1、F2是橢圓x2+2y2=2的兩個(gè)焦點(diǎn),點(diǎn)P是該橢圓上的一個(gè)動(dòng)點(diǎn),那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)已知命題p:?x∈R,sinx<
1
2
x
.則?p為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)cos215°-sin215°的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)在△ABC中,若∠A=120°,c=6,△ABC的面積為9
3
,則a=
6
3
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)已知雙曲線
x2
a2
-
y2
b2
=1
的漸近線方程是y=±2x,那么此雙曲線的離心率為
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案