(本題滿分14分)如圖所示,正方形與矩形所在平面互相垂直,,點(diǎn)E為的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:;
(III)在線段AB上是否存在點(diǎn),使二面角的大小為?若存在,求出
的長;若不存在,請說明理由.
(1)見解析;(2)見解析;(3).
【解析】第一問中利用線面平行的判定定理可知,只要證明//,那么可以得證。
第二問中,利用線面垂直度性質(zhì)定理得到線線垂直關(guān)系是證明
第三問中,假設(shè)存在點(diǎn)點(diǎn),使二面角的大小為,可以建立空間直角坐標(biāo)系,借助于法向量的夾角表示二面角的平面角的大小得到點(diǎn)的坐標(biāo)。
解:(Ⅰ) , 點(diǎn)E為的中點(diǎn),連接。
的中位線 // ……2分
又 …………4分
(II)正方形中, , 由已知可得:,
,
………………………9分
(Ⅲ)由題意可得:,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,則,
設(shè),
設(shè)平面的法向量為,
則得,
取平面的一個(gè)法向量,
而平面的一個(gè)法向量為,二面角的大小為,,
故當(dāng)時(shí),二面角的大小為………………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點(diǎn),F(xiàn)是AB中點(diǎn),
(1)求證:;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF//平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、的邊長都是1,平面平面,點(diǎn)在上移動,點(diǎn)在上移動,若()
(I)求的長;
(II)為何值時(shí),的長最;
(III)當(dāng)的長最小時(shí),求面與面所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點(diǎn)。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com