【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點,求t的取值范圍.
【答案】
(1)解:∵1是關(guān)于x的方程f(x)﹣g(x)=0的一個解,
∴l(xiāng)oga2﹣2loga(2+t)=0,
∴2=(2+t)2,
∴t= ﹣2
(2)解:當0<a<1且t=﹣1時,
不等式f(x)≤g(x)可化為
loga(x+1)≤2loga(2x﹣1),
故 ,
解得, <x≤
(3)解:F(x)=af(x)+tx2﹣2t+1
=x+1+tx2﹣2t+1=tx2+x﹣2t+2,
令tx2+x﹣2t+2=0,
即t(x2﹣2)=﹣(x+2),
∵x∈(﹣1,2],∴x+2∈(1,4],
∴t≠0,x2﹣2≠0;
∴ =﹣ =﹣[(x+2)+ ]+4,
∵2 ≤(x+2)+ ≤ ,
∴﹣ ≤﹣[(x+2)+ ]+4≤4﹣2 ,
∴﹣ ≤ ≤4﹣2 ,
∴t≤﹣2或t≥
【解析】(1)由題意得loga2﹣2loga(2+t)=0,從而解得.(2)由題意得loga(x+1)≤2loga(2x﹣1),由對數(shù)函數(shù)的單調(diào)性可得 ,從而解得.(3)化簡F(x)=tx2+x﹣2t+2,從而令tx2+x﹣2t+2=0,討論可得 =﹣ =﹣[(x+2)+ ]+4,從而解得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求在上的單調(diào)區(qū)間;
(Ⅱ)求在(為自然對數(shù)的底數(shù))上的最大值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,且
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在極大值,且對于的一切可能取值, 的極大值均小于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項和Sn有最大值,那么當Sn取的最小正值時,n=( )
A.11
B.17
C.19
D.21
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣﹣2lnx.
(Ⅰ)若f(x)在x=2時有極值,求實數(shù)a的值和f(x)的極大值;
(Ⅱ)若f(x)在定義域上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com