【題目】已知直線為公海與領(lǐng)海的分界線,一艘巡邏艇在原點(diǎn)處發(fā)現(xiàn)了北偏東 海面上處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.

1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點(diǎn)的軌跡;

2)若與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船,則,之間的最遠(yuǎn)距離是多少海里?

【答案】(1)以為圓心,以4為半徑的圓;(2)海里

【解析】

1)在平面直角坐標(biāo)系中,設(shè)走私船能被截獲的點(diǎn)的坐標(biāo)為,根據(jù)可得的軌跡.

2)先求出的值,再設(shè),類似于(1)中求軌跡的方法可求的軌跡,該軌跡與直線至多有一個(gè)公共點(diǎn),從而可得的取值范圍.

1)如圖,

因?yàn)?/span>,故,設(shè)走私船能被截獲的點(diǎn)的坐標(biāo)為,

,所以,

整理得到,所以的軌跡是以為圓心,為半徑的圓.

2)因?yàn)?/span>與公海的最近距離20海里,故,因,故.

故直線

設(shè),故,設(shè)走私船能被截獲的點(diǎn)的坐標(biāo)為

,故

整理得到,

的軌跡是以為圓心,為半徑的圓.

由題設(shè)可知,該圓的圓心在直線下方且圓與直線至多有一個(gè)公共點(diǎn),

,解得

,之間的最遠(yuǎn)距離是海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域是一切實(shí)數(shù)的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)()使得

對(duì)任意實(shí)數(shù)都成立,則稱是一個(gè)伴隨函數(shù).有下列關(guān)于伴隨函數(shù)的結(jié)論:

是常數(shù)函數(shù)中唯一一個(gè)伴隨函數(shù)

②“伴隨函數(shù)至少有一個(gè)零點(diǎn);

是一個(gè)伴隨函數(shù);

其中正確結(jié)論的個(gè)數(shù)是 ( )

A.1個(gè);B.2個(gè);C.3個(gè);D.0個(gè);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列 為其前項(xiàng)的和,滿足

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:當(dāng)時(shí)

3)(理)已知當(dāng),且時(shí)有,其中,求滿足的所有的值.

4)(文)若函數(shù)的定義域?yàn)?/span>,并且,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,直線經(jīng)過(guò)點(diǎn)相交于、兩點(diǎn).

(1)若,求證: 必為的焦點(diǎn);

(2)設(shè),若點(diǎn)上,且的最大值為,求的值;

(3)設(shè)為坐標(biāo)原點(diǎn),若,直線的一個(gè)法向量為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知箱中裝有10個(gè)不同的小球,其中2個(gè)紅球、3個(gè)黑球和5個(gè)白球,現(xiàn)從該箱中有放回地依次取出3個(gè)小球.則3個(gè)小球顏色互不相同的概率是______;若變量為取出3個(gè)球中紅球的個(gè)數(shù),則的方差______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著金融市場(chǎng)的發(fā)展,越來(lái)越多人選擇投資“黃金”作為理財(cái)?shù)氖侄危旅鎸?/span>A市把黃金作為理財(cái)產(chǎn)品的投資人的年齡情況統(tǒng)計(jì)如下圖所示.

1)求圖中a的值;

2)求把黃金作為理財(cái)產(chǎn)品的投資者的年齡的中位數(shù)以及平均數(shù);(結(jié)果用小數(shù)表示,小數(shù)點(diǎn)后保留兩位有效數(shù)字)

3)以頻率估計(jì)概率,現(xiàn)從所有投資者中隨機(jī)抽取4人,記年齡在的人數(shù)為X,求X的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,且軸,.

1)求橢圓的方程;

2)是否存在斜率為的直線與以線段為直徑的圓相交于,兩點(diǎn),與橢圓相交于,兩點(diǎn),且?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是(

A.上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B.上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C.上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D.上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)有窮數(shù)列每相鄰兩項(xiàng)之間添加一項(xiàng),使其等于兩相鄰項(xiàng)的和,我們把這樣的操作叫做該數(shù)列的一次“H擴(kuò)展”. 已知數(shù)列1,2. 第一次“H擴(kuò)展”后得到1,3,2;第二次“H擴(kuò)展”后得到1,43,5,2; 那么第10次“H擴(kuò)展”后得到的數(shù)列的所有項(xiàng)的和為( )

A.88572B.88575C.29523D.29526

查看答案和解析>>

同步練習(xí)冊(cè)答案