如圖,已知三棱錐A-BPC中,APPC,ACBC,MAB中點(diǎn),DPB中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC;

(2)求證:平面ABC⊥平面APC;

(3)若BC=4,AB=20,求三棱錐D-BCM的體積.

 (1)證明:∵MAB中點(diǎn),DPB中點(diǎn),

MD∥AP.

又∵平面APC

DM∥平面APC.

(2)證明:∵△PMB為正三角形,且D為PB中點(diǎn),

MDPB.

又由(1)知,MDAP.∴APPB.

又已知APPC,∴AP⊥平面PBC.

APBC.又∵ACBC,

BC⊥平面APC.

∴平面ABC⊥平面PAC.

(3)解:∵AB=20,

MB=10.∴PB=10.

BC=4,,

.?

.

.


解析:

同答案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-PBC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且AB=2MP.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開(kāi)在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的棱長(zhǎng)都相等,E,F(xiàn)分別是棱AB,CD的中點(diǎn),則EF與BC所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案