相關(guān)習題
 0  366248  366256  366262  366266  366272  366274  366278  366284  366286  366292  366298  366302  366304  366308  366314  366316  366322  366326  366328  366332  366334  366338  366340  366342  366343  366344  366346  366347  366348  366350  366352  366356  366358  366362  366364  366368  366374  366376  366382  366386  366388  366392  366398  366404  366406  366412  366416  366418  366424  366428  366434  366442  366461 

科目: 來源: 題型:

【題目】小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:

1)他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,邊上的中線,若,求證:.

2)如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結(jié)論)

3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊的數(shù)量關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過點AB、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點為E,EFx軸于F點,Mm0)是x軸上一動點,N是線段EF上一點,若∠MNC90°,請指出實數(shù)m的變化范圍,并說明理由.

3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線ykx+2k0)與拋物線相交于點P、Q(點P在左邊),過點Px軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,點E在邊AD上,連接BE,在BE上取點F,連接AF并延長交BDH,且∠AFE60°,過CCGBD,直線CG、AF交于G

(1)求證:∠FAE=∠EBA;

(2)求證:AHBE;

(3)AE3BH5,求線段FG的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點C、D為監(jiān)測點,已知點C、DB在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192tan35°≈0.7002

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,點ECD的中點,將BCE沿BE折疊后得到BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__

查看答案和解析>>

科目: 來源: 題型:

【題目】(Ⅰ)如圖1,在菱形中,已知,,拋物線)經(jīng)過,,三點.

1)點的坐標為__________,點的坐標為__________;

2)求拋物線的解析式.

(Ⅱ)如圖2,點的中點,點的中點,直線垂直于點,點在直線上.

3)當的值最小時,則點的坐標為____________;

4)在(3)的條件下,連接、,問在拋物線上是否存在點,使得以,為頂點的三角形與相似?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點是線段上一點,,以點為圓心,的長為半徑作⊙,過點的垂線交⊙兩點,點在線段的延長線上,連接交⊙于點,以為邊作

1)求證:是⊙的切線;

2)若,求四邊形與⊙重疊部分的面積;

3)若,,連接,求的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O,分別過點B、CBEAC,CEBD,BECE交于點E.

(1)求證:四邊形OBEC是矩形;

(2)當∠ABD=60°,AD=2時,求∠EDB的正切值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了節(jié)能減排,我市某校準備購買某種品牌的節(jié)能燈,已知3A型節(jié)能燈和5B型節(jié)能燈共需50元,2A型節(jié)能燈和3B型節(jié)能燈共需31元.

1)求1A型節(jié)能燈和1B型節(jié)能燈的售價各是多少元?

2)學校準備購買這兩種型號的節(jié)能燈共200只,要求A型節(jié)能燈的數(shù)量不超過B型節(jié)能燈的數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習冊答案