科目: 來源: 題型:
【題目】菱形ABCD中,點P為CD上一點,連接BP.
(1)如圖1,若BP⊥CD,菱形ABCD邊長為10,PD=4,連接AP,求AP的長.
(2)如圖2,連接對角線AC、BD相交于點O,點N為BP的中點,過P作PM⊥AC于M,連接ON、MN.試判斷△MON的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A、B,直線l1、l2交于點C.
(1)求直線l2的解析表達(dá)式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請求出點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖,已知入口BC寬3.9米,門衛(wèi)室外墻上的O點處裝有一盞燈,點O與地面BC的距離為3.3米,燈臂OM長1.2米,(燈罩長度忽略不計),∠AOM=60°.
(1)求點M到地面的距離,
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車能否從該入口安全通過?如果能安全通過,請直接寫出貨車離門衛(wèi)室外墻AB的最小距離(精確到0.01米);如果不能安全通過,請說明理由.(參考數(shù)據(jù):1.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】近期,我市中小學(xué)廣泛開展了“傳承中華文化,共筑精神家園”愛國主義讀書教育活動,某中學(xué)為了解學(xué)生最喜愛的活動形式,以“我最喜愛的一種活動”為主題,進(jìn)行隨機抽樣調(diào)查,收集數(shù)據(jù)整理后,繪制出以下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中提供的信息,解答下面的問題:
最喜愛的一種活動統(tǒng)計表
活動形式 | 征文 | 講故事 | 演講 | 網(wǎng)上競答 | 其他 |
人數(shù) | 60 | 30 | 39 | a | b |
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?扇形統(tǒng)計圖中“講故事”部分的圓心角是多少度?
(2)如果這所中學(xué)共有學(xué)生3800名,那么請你估計最喜愛征文活動的學(xué)生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,把平面內(nèi)一條數(shù)軸x繞點O逆時針旋轉(zhuǎn)角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個平面斜坐標(biāo)系.規(guī)定:已知點P是平面斜坐標(biāo)系中任意一點,過點P作y軸的平行線交x軸于點A,過點P作x軸的平行線交y軸于點B,若點A在x軸上對應(yīng)的實數(shù)為a,點B在y軸上對應(yīng)的實數(shù)為b,則稱有序?qū)崝?shù)對(a,b)為點P的斜坐標(biāo).在平面斜坐標(biāo)系中,若θ=45°,點P的斜坐標(biāo)為(1,2),點G的斜坐標(biāo)為(7,﹣2),連接PG,則線段PG的長度是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D是的中點,AD交BC于點E,若CE=,BE=,以下結(jié)論中:①sin∠ABC=;②AD=,③S⊙O=π;④OE∥BD.其中正確的共有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中,AB=3,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則四邊形ABEF的周長為( )
A.12B.14C.16D.18
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某商品標(biāo)牌的示意圖,⊙O與等邊△ABC的邊BC相切于點C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長為4,設(shè)⊙O與AC相交于點E,則AE的長為( 。
A.B.1C.﹣1D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在銳角△ABC中,D、E分別是AB、BC的中點,點F在AC上,且滿足∠AFE=∠A,DM∥EF交AC于點M.
(1)證明:DM=DA;
(2)如圖2,點G在BE上,且∠BDG=∠C,求證:△DEG∽△ECF;
(3)在圖2中,取CE上一點H,使得∠CFH=∠B,若BG=3,求EH的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】攀枝花得天獨厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠(yuǎn)銷北上廣等大城市.某水果店購進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價為10元/千克,售價不低于15元/千克,且不超過40元/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.
銷售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售價(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天這種芒果售價為28元/千克.求當(dāng)天該芒果的銷售量
(2)設(shè)某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com