科目: 來源: 題型:
【題目】已知y=ax2+bx+c(其中a,b,c為常數(shù),且a≠0),樂老師在用描點法畫其的圖象時,列出如下表格,根據(jù)該表格,下列判斷中不正確的是( )
x | … | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣2 | 2.5 | 4 | 2.5 | … |
A. a<0
B. 一元二次方程ax2+bx+c﹣5=0沒有實數(shù)根
C. 當x=3時y=﹣2
D. 一元二次方程ax2+bx+c=0有一根比3大
查看答案和解析>>
科目: 來源: 題型:
【題目】某賓館有若干間標準房,當標準房的價格為200元時,每天入住的房間數(shù)為60間,經(jīng)市場調(diào)查表明,該賓館每間標準房的價格在170~240元之間(含170元,240元)浮動時,每天入住的房間數(shù)(間)與每間標準房的價格(元)的數(shù)據(jù)如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(間) | … | 65 | 60 | 55 | 50 | … |
(1)根據(jù)所給數(shù)據(jù)在坐標系中描出相應的點,并畫出圖象.
(2)求關于的函數(shù)表達式、并寫出自變量的取值范圍.
(3)設客房的日營業(yè)額為(元).若不考慮其他因素,問賓館標準房的價格定為多少元時.客房的日營業(yè)額最大?最大為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=6,點E在對角線BD上,DE=2,連接CE,過點E作EF⊥CE,交線段AB于點F
(1)求證:CE=EF;
(2)求FB的長;
(3)連接FC交BD于點G.求BG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+bx+3與x軸分別交于點A(﹣3,0),B(1,0)交于點C,拋物線的頂點為點D.
(1)拋物線的表達式及頂點D的坐標.
(2)若點F是線段AD上一個動點,
①如圖1,當FC+FO的值最小時,求點F的坐標;
②如圖2,以點A,F,O為頂點的三角形能否與△ABC相似?若能,求出點F的坐標;若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校調(diào)查了若干名家長對“初中生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,根據(jù)圖中提供的信息,完成以下問題:
(1)本次共調(diào)查了 名家長;扇形統(tǒng)計圖中“很贊同”所對應的圓心角是 度.已知該校共有1600名家長,則“不贊同”的家長約有 名;請補全條形統(tǒng)計圖;
(2)從“不贊同”的五位家長中(兩女三男),隨機選取兩位家長對全校家長進行“學生使用手機危害性”的專題講座,請用樹狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明想測量濕地公園內(nèi)某池塘兩端A,B兩點間的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=40°,再向前行走100米到點D處,測得∠BDF=52.44°,若直線AB與EF之間的距離為60米,求A,B兩點的距離(結果精確到0.1)(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,a)和B兩點,與x軸交于點C.
(1)求反比例函數(shù)的解析式及點A的坐標;
(2)若點P為x軸上一點,且滿足△ACP是等腰三角形,請直接寫出符合條件的所有點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,BC=6,S△ABC=18,正方形DEFG的邊FG在BC上,頂點D,E分別在AB,AC上.
(1)如圖1,過點A作AH⊥BC于點H,交DE于點K,求正方形DEFG的邊長;
(2)如圖2,在BE上取點M,作MN⊥BC于點N,MQ∥DE交AB于點Q,QP⊥BC于點P,求證:四邊形MNPQ是正方形;
(3)如圖3,在BE上取點R,使RE=FE,連結RG,RF,若tan∠EBF=.求證:∠GRF=90°.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,把矩形ABCD沿EF,GH折疊,使點B,C落在AD上同一點P處,∠FPG=90°,△A′EP的面積是8,△D′PH的面積是4,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】規(guī)定:如果一個四邊形有一組對邊平行,一組鄰邊相等,那么稱此四邊形為廣義菱形.根據(jù)規(guī)定判斷下面四個結論:①正方形和菱形都是廣義菱形;②平行四邊形是廣義菱形;③對角線互相垂直,且兩組鄰邊分別相等的四邊形是廣義菱形;④若M、N的坐標分別為P是二次函數(shù)的圖象上在第一象限內(nèi)的任意一點,PQ垂直直線于點Q,則四邊形PMNQ是廣義菱形.其中正確的是_____.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com