相關習題
 0  365190  365198  365204  365208  365214  365216  365220  365226  365228  365234  365240  365244  365246  365250  365256  365258  365264  365268  365270  365274  365276  365280  365282  365284  365285  365286  365288  365289  365290  365292  365294  365298  365300  365304  365306  365310  365316  365318  365324  365328  365330  365334  365340  365346  365348  365354  365358  365360  365366  365370  365376  365384  366461 

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(10),頂點A的坐標為(02),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為(  )

A.,0B.2,0C.,0D.3,0

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和C03).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最小?如果存在,請求出點P的坐標,如果不存在,請說明理由;(3)設點M在拋物線的對稱軸上,當△MAC是直角三角形時,求點M的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應地任務:

萊昂哈德·歐拉(Leonhard Euler)是瑞士數學家,在數學上經常見到以他的名字命名的重要常數,公式和定理,下面是歐拉發(fā)現的一個定理:在△ABC中,Rr分別為外接圓和內切圓的半徑,OI分別為其外心和內心,則.

如圖1,⊙O和⊙I分別是△ABC的外接圓和內切圓,⊙I與AB相切分于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.

下面是該定理的證明過程(部分):

延長AI⊙O于點D,過點I⊙O的直徑MN,連接DM,AN.

∵∠D=∠N∠DMI=∠NAI(同弧所對的圓周角相等),

∴△MDI∽△ANI

,

①,

如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BEBDBIIF,

∵DE⊙O的直徑,∴∠DBE=90°,

∵⊙IAB相切于點F,∴∠AFI=90°,

∴∠DBE=∠IFA,

∵∠BAD=∠E(同弧所對圓周角相等),

∴△AIF∽△EDB,

②,

任務:(1)觀察發(fā)現:, (用含R,d的代數式表示);

(2)請判斷BDID的數量關系,并說明理由;

(3)請觀察式子①和式子②,并利用任務(1),(2)的結論,按照上面的證明思路,完成該定理證明的剩余部分;

(4)應用:若△ABC的外接圓的半徑為5cm,內切圓的半徑為2cm,則△ABC的外心與內心之間的距離為 cm.

查看答案和解析>>

科目: 來源: 題型:

【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.

(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結果;

(Ⅱ)求兩次取出的小球標號相同的概率;

(Ⅲ)求兩次取出的小球標號的和大于6的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線)與,軸分別交于,兩點,以為邊在直線的上方作正方形,反比例函數的圖象分別過點和點.,則的值為______.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖為二次函數yax2+bx+c的圖象,在下列說法中①ac0;②方程ax2+bx+c0的根是x1=﹣1,x23;③a+b+c0;④當x1時,yx的增大而增大,正確的是( )

A. ①③B. ②④C. ①②④D. ②③④

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,點E是線段AC上的一個動點且k0k1),點F在線段BC上,且DEFH為矩形;過點EMNBC,分別交AD,BC于點MN

1)求證:△MED∽△NFE;

2)當EFFC時,求k的值.

3)當矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數ymx2﹣(2m+1x+2m0),請判斷下列結論是否正確,并說明理由.

1)當m0時,函數ymx2﹣(2m+1x+2x1時,yx的增大而減小;

2)當m0時,函數ymx2﹣(2m+1x+2圖象截x軸上的線段長度小于2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點DBC的中點,經過AD兩點的圓分別與AB,AC交于點E、F,連接DE,DF

1)求證:DEDF

2)求證:以線段BE+CF,BD,DC為邊圍成的三角形與△ABC相似,

查看答案和解析>>

同步練習冊答案