科目: 來源: 題型:
【題目】如圖,已知點A(﹣1,0),B(3,0),C(0,1)在拋物線y=ax2+bx+c上.
(1)求拋物線解析式;
(2)在直線BC上方的拋物線上求一點P,使△PBC面積為1;
(3)在x軸下方且在拋物線對稱軸上,是否存在一點Q,使∠BQC=∠BAC?若存在,求出Q點坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(為方便答題,可在答題卡上畫出你認為必要的圖形)
在Rt△ABC中,∠A=90°,AC=AB=4,D,E分別是邊AB,AC的中點.若等腰Rt△ADE繞點A逆時針旋轉,得到等腰RtRt△AD1E1,設旋轉角為α(0<α≤180°),記直線BD1與CE1的交點為P.
(1)如圖1,當α=90°時,線段BD1的長等于 ,線段CE1的長等于 ;(直接填寫結果)
(2)如圖2,當α=135°時,求證:BD1=CE1 ,且BD1⊥CE1 ;
(3)求點P到AB所在直線的距離的最大值.(直接寫出結果)
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.
(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?
(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,連接AC與⊙O交于點 D.取BC的中點E,連接DE,并連接OE交⊙O于點F.連接AF交BC于點G,連接BD交AG于點H.
(1)若EF=1,BE=,求∠EOB的度數(shù);
(2)求證:DE為⊙O的切線;
(3)求證:點F為線段HG的中點.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著移動計算技術和無線網絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:
(Ⅰ)本次接受隨機抽樣調查的學生人數(shù)為 ,圖①中m的值為 ;
(Ⅱ)求本次調查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠XOY=60°,點A在邊OX上,OA=2.過點A作AC⊥OY于點C,以AC為一邊在∠XOY內作等邊三角形ABC,點P是△ABC圍成的區(qū)域(包括各邊)內的一點,過點P作PD∥OY交OX于點D,作PE∥OX交OY于點E.設OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上的一點,BE=4,EC=8,將正方形邊AB沿AE折疊到AF,延長EF交DC于G,連接AG,現(xiàn)在有如下四個結論:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中結論正確的序號是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax2+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,則y1>y2.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com