科目: 來源: 題型:
【題目】(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是 ;
(問題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F,即分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為 km;
(拓展應用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個入口C和D,且AC=4米,D是OB的中點,出口E在上.現(xiàn)準備沿CE、DE從入口到出口鋪設兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.
①出口E設在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)
②已知鋪設小路CE所用的普通石材每米的造價是200元,鋪設小路DE所用的景觀石材每米的造價是400元.
請問:在上是否存在點E,使鋪設小路CE和DE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù) y=ax2+bx+2 的圖象與 x 軸交于 A(﹣3,0),B(1,0)兩點,與 y 軸交于點C.
(1)求這個二次函數(shù)的關系解析式 ,x 滿足什么值時 y﹤0 ?
(2)點 p 是直線 AC 上方的拋物線上一動點,是否存在點 P,使△ACP 面積最大?若存在,求出點 P的坐標;若不存在,說明理由
(3)點 M 為拋物線上一動點,在 x 軸上是否存在點 Q,使以 A、C、M、Q 為頂點的四邊形是平行四邊形?若存在,直接寫出點 Q 的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司研制出新產(chǎn)品,該產(chǎn)品的成本為每件2400元.在試銷期間,購買不超過10件時,每件銷售價為3000元;購買超過10件時,每多購買一件,所購產(chǎn)品的銷售單價均降低5元,但最低銷售單價為2600元。請解決下列問題:
(1)直接寫出:購買這種產(chǎn)品 ________件時,銷售單價恰好為2600元;
(2)設購買這種產(chǎn)品x件(其中x>10,且x為整數(shù)),該公司所獲利潤為y元,求y與x之間的函數(shù)表達式;
(3)該公司的銷售人員發(fā)現(xiàn):當購買產(chǎn)品的件數(shù)超過10件時,會出現(xiàn)隨著數(shù)量的增多,公司所獲利潤反而減少這一情況.為使購買數(shù)量越多,公司所獲利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1是超市的手推車,如圖2是其側面示意圖,已知前后車輪半徑均為5 cm,兩個車輪的圓心的連線AB與地面平行,測得支架AC=BC=60cm,AC、CD所在直線與地面的夾角分別為30°、60°,CD=50cm.
(1)求扶手前端D到地面的距離;
(2)手推車內(nèi)裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10 cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的寬度.(本題答案均保留根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三個頂點的坐標分別.
(1)畫出;
(2)以B為位似中心,將放大到原來的2倍,在右圖的網(wǎng)格圖中畫出放大后的圖形△;
(3)寫出點A的對應點的坐標:___.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校九年級學生某科目學期總評成績是由完成作業(yè)、單元檢測、期末考試三項成績構成的,如果學期總評成績80分以上(含80分),則評定為“優(yōu)秀”,下表是小張和小王兩位同學的成績記錄:
完成作業(yè) | 單元測試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 | _______ |
若按完成作業(yè)、單元檢測、期末考試三項成績按1:2:7的權重來確定學期總評成績.
(1)請計算小張的學期總評成績?yōu)槎嗌俜郑?/span>
(2)小王在期末(期末成績?yōu)檎麛?shù))應該最少考多少分才能達到優(yōu)秀?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,S是矩形ABCD的AD邊上一點,點E以每秒kcm的速度沿折線BS-SD-DC勻速運動,同時點F從點C出發(fā)點,以每秒1cm的速度沿邊CB勻速運動.已知點F運動到點B時,點E也恰好運動到點C,此時動點E,F同時停止運動.設點E,F出發(fā)t秒時,△EBF的面積為.已知y與t的函數(shù)圖像如圖2所示.其中曲線OM,NP為兩段拋物線,MN為線段.則下列說法:
①點E運動到點S時,用了2.5秒,運動到點D時共用了4秒;
②矩形ABCD的兩鄰邊長為BC=6cm,CD=4cm;
③sin∠ABS=;
④點E的運動速度為每秒2cm.其中正確的是( )
A.①②③B.①③④C.①②④D.②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知頂點為C(0,﹣3)的拋物線D1:y=ax2+b(a≠0)與x軸交于A,B兩點,直線L:y=x+m過頂點C和點B.
(1)求拋物線D1:y=ax2+b(a≠0)的解析式;
(2)點D(0,),在x軸上任取一點Q(x,0),連接DQ,作線段DQ的垂直平分線l1,過點Q作x軸的垂線,記l2,l2與l1的交點為P(x,y),在x軸上多次改變點Q的位置,相應的點P也在坐標系中形成了曲線路徑D2,寫出點P(x,y)的路徑D2所滿足的關系式(即x,y所滿足的關系式),能否通過平移、軸對稱或旋轉變換,由拋物線D1得到曲線D2?請說明理由.
(3)拋物線D1上是否存在點M,使得∠MCB=15°?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,△ABC,△CDE都是等邊三角形.
(1)寫出AE與BD的大小關系.
(2)若把△CDE繞點C逆時針旋轉到圖②的位置時,上述(1)的結論仍成立嗎?請說明理由.
(3)△ABC的邊長為5,△CDE的邊長為2,把△CDE繞點C逆時針旋轉一周后回到圖①位置,求出線段AE長的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com