科目: 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=5,點(diǎn)E在DC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,求cos∠EFC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,的余切值為2,,點(diǎn)D是線段上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、B重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個(gè)頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長(zhǎng),交射線于點(diǎn)P.
(1)點(diǎn)D在運(yùn)動(dòng)時(shí),下列的線段和角中,________是始終保持不變的量(填序號(hào));
①;②;③;④;⑤;⑥;
(2)設(shè)正方形的邊長(zhǎng)為x,線段的長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;
(3)如果與相似,但面積不相等,求此時(shí)正方形的邊長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知在平面直角坐標(biāo)系中,拋物線(其中、為常數(shù),且)與軸交于點(diǎn),它的坐標(biāo)是,與軸交于點(diǎn),此拋物線頂點(diǎn)到軸的距離為4.
(1)求拋物線的表達(dá)式;
(2)求的正切值;
(3)如果點(diǎn)是拋物線上的一點(diǎn),且,試直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)E,AD=DC,DC2=DEDB,求證:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是一位同學(xué)做的一道作圖題:
已知線段、、(如圖所示),求作線段,使.
他的作法如下:
1.以下為端點(diǎn)畫射線,.
2.在上依次截取,.
3.在上截取.
4.聯(lián)結(jié),過點(diǎn)作,交于點(diǎn).
所以:線段______就是所求的線段.
(1)試將結(jié)論補(bǔ)完整:線段______就是所求的線段.
(2)這位同學(xué)作圖的依據(jù)是______;
(3)如果,,,試用向量表示向量.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,線段,,,,點(diǎn)為射線上一點(diǎn),平分交線段于點(diǎn)(不與端點(diǎn),重合).
(1)當(dāng)為銳角,且時(shí),求四邊形的面積;
(2)當(dāng)與相似時(shí),求線段的長(zhǎng);
(3)設(shè),,求關(guān)于的函數(shù)關(guān)系式,并寫出定義域.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)稱軸為直線x=1的拋物線y=ax2+bx+8過點(diǎn)(﹣2,0).
(1)求拋物線的表達(dá)式,并寫出其頂點(diǎn)坐標(biāo);
(2)現(xiàn)將此拋物線沿y軸方向平移若干個(gè)單位,所得拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為B,與x軸負(fù)半軸交于點(diǎn)A,過B作x軸的平行線交所得拋物線于點(diǎn)C,若AC∥BD,試求平移后所得拋物線的表達(dá)式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E位于邊BC上,已知BD是BA與BE的比例中項(xiàng).
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com