科目: 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時,y隨x增大而減。虎a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目: 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整:
(1)自變量的取值范圍是全體實數(shù), 與的幾組對應(yīng)值如下:
其中,________.
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,回答下列問題:
①函數(shù)圖像的對稱性是: .
②當(dāng)時,寫出隨的變化規(guī)律: .
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):方程有________個實數(shù)根.
查看答案和解析>>
科目: 來源: 題型:
【題目】小張到老王的果園里一次性采購一種水果,他倆商定:小張的采購價 (元/噸)與采購量(噸)之間函數(shù)關(guān)系的圖象如圖中的折線段所示(不包含端點,但包含端點).
(1)求與之間的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)已知老王種植水果的成本是元/噸,那么小張的采購量為多少時,老王在這次買賣中所獲的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,臺風(fēng)中心位于點,并沿東北方向移動,已知臺風(fēng)移動的速度為40千米/時,受影響區(qū)域的半徑為260千米,市位于點的北偏東75°方向上,距離點480千米.
(1)說明本次臺風(fēng)是否會影響市;
(2)若這次臺風(fēng)會影響市,求市受臺風(fēng)影響的時間.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】(問題呈現(xiàn))如圖1,在邊長為1的正方形網(wǎng)格中,連接格點D,N和E,C,DN和EC相交于點P,求tan∠CPN的值.
(方法歸納)求一個銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個直角三角形.觀察發(fā)現(xiàn)問題中∠CPN不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題,比如連接格點M,N,可得MN∥EC,則∠DNM=∠CPN,連接DM,那么∠CPN就變換到Rt△DMN中.
(問題解決)(1)直接寫出圖1中tan∠CPN的值為 ;
(2)如圖2,在邊長為1的正方形網(wǎng)格中,AN與CM相交于點P,求cos∠CPN的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。
(1)在如圖的坐標(biāo)系中求拋物線的解析式。
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?
查看答案和解析>>
科目: 來源: 題型:
【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標(biāo);
(2)求點M(x,y)在函數(shù)y=﹣的圖象上的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達(dá)式為y=﹣x+3.
(1)求拋物線的表達(dá)式;
(2)在直線BC上有一點P,使PO+PA的值最小,求點P的坐標(biāo);
(3)在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com