科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形為正方形,點(diǎn)的坐標(biāo)為,動點(diǎn)沿邊從向以每秒的速度運(yùn)動,同時動點(diǎn)沿邊從向以同樣的速度運(yùn)動,連接、交于點(diǎn).
(1)試探索線段、的關(guān)系,寫出你的結(jié)論并說明理由;
(2)連接、,分別取、、、的中點(diǎn)、、、,則四邊形是什么特殊平行四邊形?請在圖①中補(bǔ)全圖形,并說明理由.
(3)如圖②當(dāng)點(diǎn)運(yùn)動到中點(diǎn)時,點(diǎn)是直線上任意一點(diǎn),點(diǎn)是平面內(nèi)任意一點(diǎn),是否存在點(diǎn)使以、、、為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?
查看答案和解析>>
科目: 來源: 題型:
【題目】解方程(按要求方法解方程,否則不得分,沒有要求的請用適當(dāng)?shù)姆椒ń夥匠蹋?/span>
(1)(直接開方法) (2)(配方法)
(3)(公式法) (4)(因式分解法)
(5) (6)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AD 是△ABC 的角平分線,DE,DF 分別是△BAD 和△ACD 的高,得到下列四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時,四邊形 AEDF 是正方形;④AE+DF=AF+DE.其中正確的是_________(填序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個題目:“如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,請根據(jù)上述條件,寫出一個正確結(jié)論”其中四位同學(xué)寫出的結(jié)論如下:
小青:;小何:四邊形DFBE是正方形;
小夏:;小雨:.
這四位同學(xué)寫出的結(jié)論中不正確的是
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在以點(diǎn)為中心的正方形中,,連接,動點(diǎn)從點(diǎn)出發(fā)沿以每秒1個單位長度的速度勻速運(yùn)動,到達(dá)點(diǎn)停止.在運(yùn)動過程中,的外接圓交于點(diǎn),連接交于點(diǎn),連接,將沿翻折,得到.
(1)求證:是等腰直角三角形;
(2)當(dāng)點(diǎn)恰好落在線段上時,求的長;
(3)設(shè)點(diǎn)運(yùn)動的時間為秒,的面積為,求關(guān)于時間的關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),,經(jīng)過點(diǎn)的一次函數(shù)的圖象與軸正半軸交于點(diǎn),且與拋物線的另一個交點(diǎn)為,的面積為5.
(1)求拋物線和一次函數(shù)的解析式;
(2)拋物線上的動點(diǎn)在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點(diǎn)E的坐標(biāo);
(3)若點(diǎn)為軸上任意一點(diǎn),在(2)的結(jié)論下,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(且)的圖象在第一象限交于點(diǎn)、,且該一次函數(shù)的圖象與軸正半軸交于點(diǎn),過、分別作軸的垂線,垂足分別為、.已知,.
(1)求的值和反比例函數(shù)的解析式;
(2)若點(diǎn)為一次函數(shù)圖象上的動點(diǎn),求長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com