科目: 來源: 題型:
【題目】柳州市某校的生物興趣小組在老師的指導(dǎo)下進行了多項有意義的生物研究并取得成果.下面是這個興趣小組在相同的實驗條件下,對某植物種子發(fā)芽率進行研究時所得到的數(shù)據(jù):
種子數(shù) | 30 | 75 | 130 | 210 | 480 | 856 | 1250 | 2300 |
發(fā)芽數(shù) | 28 | 72 | 125 | 200 | 457 | 814 | 1187 | 2185 |
發(fā)芽頻率 | 0.9333 | 0.9600 | 0.9615 | 0.9524 | 0.9521 | 0.9509 | 0.9496 | 0.9500 |
依據(jù)上面的數(shù)據(jù)可以估計,這種植物種子在該實驗條件下發(fā)芽的概率約是_____(結(jié)果精確到0.01).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,要設(shè)計一個等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)根據(jù)設(shè)計的要求,甬道的寬不能超過6米.如果修建甬道的總費用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費用為每平方米0.02萬元,那么當(dāng)甬道的寬度為多少米時,所建花壇的總費用為239萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】要在一塊長52m,寬48m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路.下面分別是小亮和小穎的設(shè)計方案.
(1)求小亮設(shè)計方案中甬路的寬度x;
(2)求小穎設(shè)計方案中四塊綠地的總面積(友情提示:小穎設(shè)計方案中的與小亮設(shè)計方案中的取值相同)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在兩面墻之間有一個底端在A點的梯子,當(dāng)它靠在一側(cè)墻上時,梯子的頂端在B點;當(dāng)它靠在另一側(cè)墻上時,梯子的頂端在D點.已知∠BAC=60°,∠DAE=45°,點D到地面的垂直距離DE=3米.求點B到地面的垂直距離BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、B兩點,與x軸交于點C,與y軸交于點E,其中.
求該一次函數(shù)和反比例函數(shù)的解析式;
若點D是x軸正半軸上一點,且,連接OB、BD,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,直徑經(jīng)過弦的中點,點在上,的延長線交于于點,交過的直線于,,連接與交于點.
(1)求證:是的切線;
(2)若點是的中點,的半徑為3,,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸相交于點、,與軸相交于點.
求該函數(shù)的表達式;
點為該函數(shù)在第一象限內(nèi)的圖象上一點,過點作,垂足為點,連接.
①求線段的最大值;
②若以點、、為頂點的三角形與相似,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于﹣1的實數(shù)根.其中正確的結(jié)論有( 。
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com