相關(guān)習(xí)題
 0  363354  363362  363368  363372  363378  363380  363384  363390  363392  363398  363404  363408  363410  363414  363420  363422  363428  363432  363434  363438  363440  363444  363446  363448  363449  363450  363452  363453  363454  363456  363458  363462  363464  363468  363470  363474  363480  363482  363488  363492  363494  363498  363504  363510  363512  363518  363522  363524  363530  363534  363540  363548  366461 

科目: 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標(biāo)為.連接AC,BC,DB,DC,

(1)求拋物線的函數(shù)表達式;

(2)△BCD的面積等于△AOC的面積的時,求的值;

(3)(2)的條件下,若點M軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點BDM,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與實踐

動手操作:

第一步:如圖1,正方形紙片ABCD沿對角線AC所在直線折疊,展開鋪平.在沿過點C的直線折疊,使點B,點D都落在對角線AC.此時,點B與點D重合,記為點N,且點E,點N,點F三點在同一直線上,折痕分別為CECF.如圖2.

第二步:再沿AC所在的直線折疊,△ACE△ACF重合,得到圖3

第三步:在圖3的基礎(chǔ)上繼續(xù)折疊,使點C與點F重合,如圖4,展開鋪平,連接EFFG,GM,ME,如圖5,圖中的虛線為折痕.

問題解決:

(1)在圖5中,∠BEC的度數(shù)是 ,的值是 ;

(2)在圖5中,請判斷四邊形EMGF的形狀,并說明理由;

(3)在不增加字母的條件下,請你以圖中5中的字母表示的點為頂點,動手畫出一個菱形(正方形除外),并寫出這個菱形: .

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):

萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其外心和內(nèi)心,則.

如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.

下面是該定理的證明過程(部分):

延長AI⊙O于點D,過點I⊙O的直徑MN,連接DM,AN.

∵∠D=∠N∠DMI=∠NAI(同弧所對的圓周角相等),

∴△MDI∽△ANI

,

①,

如圖2,在圖1(隱去MDAN)的基礎(chǔ)上作⊙O的直徑DE,連接BEBD,BI,IF,

∵DE⊙O的直徑,∴∠DBE=90°

∵⊙IAB相切于點F,∴∠AFI=90°,

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所對圓周角相等),

∴△AIF∽△EDB,

②,

任務(wù):(1)觀察發(fā)現(xiàn):, (用含Rd的代數(shù)式表示);

(2)請判斷BDID的數(shù)量關(guān)系,并說明理由;

(3)請觀察式子①和式子②,并利用任務(wù)(1)(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.

查看答案和解析>>

科目: 來源: 題型:

【題目】綜合與實踐小組開展了測量本校旗桿高度的實踐活動,他們制訂了測量方案,并利用課余時間完成了實地測量.他們在旗桿底部所在的平地上,選取兩個不同測點,分別測量了該旗桿頂端的仰角以及這兩個測點之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點之間的距離時,都分別測量了兩次并取它們的平均值作為測量結(jié)果,測量數(shù)據(jù)如下表(不完整)

任務(wù)一:兩次測量AB之間的距離的平均值是 m.

任務(wù)二:根據(jù)以上測量結(jié)果,請你幫助綜合與實踐小組求出學(xué)校學(xué)校旗桿GH的高度.

(參考數(shù)據(jù):sin25.7°≈0.43cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86tan31°≈0.60)

任務(wù)三:該綜合與實踐小組在定制方案時,討論過利用物體在陽光下的影子測量旗桿的高度的方案,但未被采納.你認為其原因可能是什么?(寫出一條即可).

查看答案和解析>>

科目: 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30.

方式二:顧客不購買會員卡,每次游泳付費40.設(shè)小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(),選擇方式二的總費用為y2().

(1)請分別寫出y1y2x之間的函數(shù)表達式.

(2)小亮一年內(nèi)在此游泳館游泳的次數(shù)x在什么范圍時,選擇方式一比方式二省錢.

查看答案和解析>>

科目: 來源: 題型:

【題目】中華人民共和國第二屆青年運動會(簡稱二青會)將于20198月在山西舉行,太原市作為主賽區(qū),將承擔(dān)多項賽事,現(xiàn)正從某高校的甲、乙兩班分別招募10人作為頒獎禮儀志愿者,同學(xué)們踴躍報名,甲、乙兩班各報了20人,現(xiàn)已對他們進行了基本素質(zhì)測評,滿分10.各班按測評成績從高分到低分順序各錄用10人,對這次基本素質(zhì)測評中甲、乙兩班學(xué)生的成績繪制了如圖所示的統(tǒng)計圖.

請解答下列問題:

(1)甲班的小華和乙班的小麗基本素質(zhì)測評成績都為7分,請你分別判斷小華,小麗能否被錄用(只寫判斷結(jié)果,不必寫理由).

(2)請你對甲、乙兩班各被錄用的10名志愿者的成績作出評價(眾數(shù),中位數(shù),或平均數(shù)中的一個方面評價即可).

(3)甲、乙兩班被錄用的每一位志愿者都將通過抽取卡片的方式?jīng)Q定去以下四個場館中的兩個場館進行頒獎禮儀服務(wù),四個場館分別為:太原學(xué)院足球場,太原市沙灘排球場,山西省射擊射箭訓(xùn)練基地,太原水上運動中心,這四個場館分別用字母AB,CD的四張卡片(除字母外,其余都相同)背面朝上,洗勻放好.志愿者小玲從中隨機抽取一張(不放回),再從中隨機抽取一張,請你用列表或畫樹狀圖的方法求小玲抽到的兩張卡片恰好是“A”“B”的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形ABCD的頂點Bx軸的正半軸上,點A坐標(biāo)為(-4,0),點D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點C,則k的值為______.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點,拱高為78(即最高點OAB的距離為78),跨徑為90(AB=90),以最高點O為坐標(biāo)原點,以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達式為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線aAB于點D,交AC于點E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

同步練習(xí)冊答案