科目: 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D是射線BC上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)E作BC的平行線,分別交射線AB、AC于點(diǎn)F、G,連接BE.
(1) 如圖1,當(dāng)點(diǎn)D在線段BC上時:
①求證:△AEB≌△ADC;②求證:四邊形BCGE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D在BC的延長線上,且CD=BC時,試判斷四邊形BCGE是什么特殊的四邊形?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知ABCD,點(diǎn)E是BC邊上的一點(diǎn),將邊AD延長至點(diǎn)F,使∠AFC=∠DEC.
(1)求證:四邊形DECF是平行四邊形;
(2)若AB=13,DF=14,tan A=,求CF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,AB=AC,∠ABC=72°,以B為圓心,以任意長為半徑畫弧,分別交BA、BC于M、N,再分別以M、N為圓心,以大于MN為半徑畫弧,兩弧交于點(diǎn)P,射線BP交AC于點(diǎn)D,則圖中與BC相等的線段有( 。
A. BDB. CDC. BD和ADD. CD和AD
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,直線與軸和軸分別交于點(diǎn),,若拋物線與直線有兩個不同的交點(diǎn),其中一個交點(diǎn)在線段上(包含,兩個端點(diǎn)),另一個交點(diǎn)在線段上(包含,兩個端點(diǎn)),則的取值范圍是
A. B. 或C. D. 或
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖1,拋物線y=ax2+bx+c的對稱軸為,與x軸的交點(diǎn)A(﹣1,0)與y軸交于點(diǎn)C(0,﹣2).
(1)求拋物線的解析式;
(2)如圖2.點(diǎn)P是直線BC下方拋物線上的一點(diǎn),過點(diǎn)P作BC的平行線交拋物線于點(diǎn)Q(點(diǎn)Q在點(diǎn)P右側(cè)),連結(jié)BQ,當(dāng)△PCQ的面積為△BCQ面積的一半時,求P點(diǎn)的坐標(biāo);
(3)現(xiàn)將該拋物線沿射線AC的方向進(jìn)行平移,平移后的拋物線與直線AC的交點(diǎn)為A'、C'(點(diǎn)C'在點(diǎn)A'的下方),與x軸的交點(diǎn)為B',當(dāng)△AB'C'與△AA'B'相似時,求出點(diǎn)A′的橫坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,在△ABC內(nèi)一點(diǎn)P,已知∠1=∠2=∠3,將△BCP以直線PC為對稱軸翻折,使點(diǎn)B與點(diǎn)D重合,PD與AB交于點(diǎn)E,連結(jié)AD,將△APD的面積記為S1,將△BPE的面積記為S2,則的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓O交AC于點(diǎn)D,交BC于點(diǎn)E,以點(diǎn)B為頂點(diǎn)作∠CBF,使得∠CBF=∠BAC,交AC延長線于點(diǎn)F連接BD、AE,延長AE交BF于點(diǎn)G,
(1)求證:BF為⊙O的切線;(2)求證:ACBC=BDAG;(3)若BC=2,CD:CF=4:5,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了預(yù)測本校九年級男生畢業(yè)體育測試達(dá)標(biāo)情況,隨機(jī)抽取該年級部分男生進(jìn)行一次測試(滿分50分,成績均記為整數(shù)分),并按測試成績m(單位:分)分類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的不完整條形統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)a= ,b= ,c= ;
成績等級 | 人數(shù) | 所占百分比 |
A類(45 | 10 | 20% |
B類 | 22 | 44% |
C類 | a | b |
D類 | c |
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該校九年級男生有600名,D類為測試成績不達(dá)標(biāo),請估計該校九年級男生畢業(yè)體育測試成績能達(dá)標(biāo)的有多少名?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)△ABC和△CDE是兩個等腰直角三角形,如圖1,其中∠ACB=∠DCE=90°,連結(jié)AD、BE,求證:△ACD≌△BCE.
(2)△ABC和△CDE是兩個含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD<AC,△CDE從邊CD與AC重合開始繞點(diǎn)C逆時針旋轉(zhuǎn)一定角度α(0°<α<180°);
①如圖2,DE與BC交于點(diǎn)F,與AB交于點(diǎn)G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;
②若AB=10,DE=8,連結(jié)BD、BE,當(dāng)以點(diǎn)B、D、E為頂點(diǎn)的三角形是直角三角形時,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com