科目: 來源: 題型:
【題目】為了測量被池塘隔開的A,B兩點之間的距離,根據(jù)實際情況,作出如圖所示的圖形,其中AB⊥BE,EF⊥BE,AF交BE于點D,C在BD上,有四位同學分別測量出以下四組數(shù)據(jù):①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測數(shù)據(jù),求出A、B間距離的有( )
A. 4組B. 3組C. 2組D. 1組
查看答案和解析>>
科目: 來源: 題型:
【題目】將一副三角尺(在RtΔABC中,∠ACB=90°,∠B=60°;在RtΔEDF中,∠EDF=90°,∠E=45°)如圖擺放,點D為AB的中點,DE交AC于點P,DF經(jīng)過點C.將RtΔEDF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°), DE交AC于點M,DF交BC于點N,則的值為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩名同學分別進行6次射擊訓練,訓練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓練成績作如下分析,其中說法正確的是( 。
A. 他們訓練成績的平均數(shù)相同 B. 他們訓練成績的中位數(shù)不同
C. 他們訓練成績的眾數(shù)不同 D. 他們訓練成績的方差不同
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、B是⊙O上的兩個定點,P是⊙O上的動點(P不與A、B重合)、我們稱∠APB是⊙O上關于點A、B的滑動角.
(1)已知∠APB是⊙O上關于點A、B的滑動角,
①若AB是⊙O的直徑,則∠APB= °;
②若⊙O的半徑是1,AB=,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點,以O2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關系.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達式;
(2)點P是線段BD上一點,當PE=PC時,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了深入培養(yǎng)學生交通安全意識,加強實踐活動,新華中學八年級(1)班和交警隊聯(lián)合舉行了“我當一日小交警”活動,利用星期天到交通路口值勤,協(xié)助交通警察對行人、車輛及非機動車輛進行糾章.在這次實踐活動中,若每一個路口安排5名學生,那么還剩下4人;若每個路口安排6人,那么最后一個路口不足3人,但不少于1人.
(1)求新華中學八年級(1)班有多少名學生?
(2)在值勤過程中,學生發(fā)現(xiàn)每輛汽車駛出路口后有三種方式前行:左轉(zhuǎn)、直行、右轉(zhuǎn),而且每種前行方式的可能性相同.請通過畫樹形圖或列表的方法,求連續(xù)駛出路口的兩輛汽車前行路線相同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,電線桿AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,若CD與地面成45°,∠A=60°,CD=4m,,則電線桿AB的長為多少米?
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接2011年高中招生考試,某中學對全校九年級學生進行了一次數(shù)學摸底考試,并隨機抽取了部分學生的測試成績作為樣本進行,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息,下列問題:
(1)請將表示成績類別為“中”的條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,表示成績類別為“優(yōu)”的扇形所對應的圓心角是 72 度;
(3)學校九年級共有1000人參加了這次數(shù)學考試,估算該校九年級共有多少名學生的數(shù)學成績可以達到優(yōu)秀?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.
(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;
(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大。
(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;
(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.
查看答案和解析>>
科目: 來源: 題型:
【題目】科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關系式為y=ax+b(0≤x≤3).當科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進行防輻射處理,設修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.
(1)當科研所到宿舍樓的距離x=3km時,防輻射費y=____萬元,a=____,b=____;
(2)若m=90時,求當科研所到宿舍樓的距離為多少km時,配套工程費最少?
(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com