科目: 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,△ABE與△ABO關于AB軸對稱.
(1)求證:四邊形AEBO是菱形;
(2)若AB=6,∠AOB=60°,求四邊形AEBO的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學為了了解學生對四大古典名著(《西游記》《三國演義》《水滸傳》《紅樓夢》)的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調查.根據(jù)調查結果繪制成如所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:
(1)本次調查一共抽取了_____名學生,扇形統(tǒng)計圖中“4部”所在扇形的圓心角為____度;
(2)請補全條形統(tǒng)計圖;若該中學有2000名學生,請估計至少閱讀1部四大古典名著的學生有多少名?
(3)沒有讀過四大名著的兩名學生準備從四大古典名著中各自隨機選擇一部來閱讀,請用列表法或樹狀圖求他們選中同一名著的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰Rt△ABC的直角頂點B在y軸上,邊AB交x軸于點D(,0),點C的坐標為(﹣4,0),反比例函數(shù)y=(k≠0)的圖象過點A,則k=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,小正方形格子的邊長為1,Rt△ABC三個頂點都在格點上,請解答下列問題:
(1)寫出A,C兩點的坐標;
(2)畫出△ABC關于原點O的中心對稱圖形△A1B1C1;
(3)畫出△ABC繞原點O順時針旋轉90°后得到的△A2B2C2,并直接寫出點C旋轉至C2經(jīng)過的路徑長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),以下結論:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正確的是( )
A. ①②B. ③④C. ②③④D. ①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點的拋物線y=ax2+bx+c過點B.動點P從點D出發(fā),沿DC邊向點C運動,同時動點Q從點B出發(fā),沿BA邊向點A運動,點P、Q運動的速度均為每秒1個單位,運動的時間為t秒.過點P作PE⊥CD交BD于點E,過點E作EF⊥AD于點F,交拋物線于點G.
(1)求拋物線的解析式;
(2)當t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點P、Q運動過程中,是否存在某一時刻,使△PQF是等腰三角形?若存在,請求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關于x的一元二次方程(a﹣1)x2+(2﹣3a)x+3=0.
(1)直線l:y=mx+n交x軸于點A,交y軸于點B,其中m,n(m<n)是此方程的兩根,并且=.坐標原點O關于直線l的對稱點O′在反比例函數(shù)y=的圖象上,求反比例函數(shù)y=的解析式;
(2)在(1)成立的條件下,將直線l繞點A逆時針旋轉角θ(00<θ<450),得到直線l′,l′交y軸于點P,過點P作x軸的平行線,與上述反比例函數(shù)y=的圖象交于點Q,當四邊形APQO′的面積為9﹣時,求θ的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校選派一部分學生參加“六盤水市馬拉松比賽”,要為每位參賽學生購買一頂帽子.商場規(guī)定:凡一次性購買200頂或200頂以上,可按批發(fā)價付款;購買200頂以下只能按零售價付款.如果為每位參賽學生購買1頂,那么只能按零售價付款,需用900元;如果多購買45頂,那么可以按批發(fā)價付款,同樣需用900元.問:
(1)參賽學生人數(shù)x在什么范圍內?
(2)若按批發(fā)價購買15頂與按零售價購買12頂?shù)目钕嗤,那么參賽學生人數(shù)x是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內,當x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com