科目: 來源: 題型:
【題目】如圖11,一轉(zhuǎn)盤被等分成三個扇形,上面分別標(biāo)有關(guān)-1,1,
2中的一個數(shù),指針位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,這時,鞭個扇形恰好停在指針?biāo)?/span>
指的位置,并相應(yīng)得到這個扇形上的數(shù)(若指針恰好指在等分線上,當(dāng)做指向右邊的扇形).
⑴若小靜轉(zhuǎn)動轉(zhuǎn)盤一次,求得到負數(shù)的概率;
⑵小宇和小靜分別轉(zhuǎn)動一次,若兩人得到的數(shù)相同,則稱兩人“不謀而合”,用列表法(或畫樹形圖)求兩人“不謀而合”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線與軸交于點和點(點在點的左側(cè)),與軸交于點,對稱軸是直線.
(1)求拋物線的表達式;
(2)直線平行于軸,與拋物線交于、兩點(點在點的左側(cè)),且,點關(guān)于直線的對稱點為,求線段的長;
(3)點是該拋物線上一點,且在第一象限內(nèi),聯(lián)結(jié)、,交線段于點,當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】問題:如圖1,在中,,點是射線上任意一點,是等邊三角形,且點在的內(nèi)部,連接.探究線段與之間的數(shù)量關(guān)系.
請你完成下列探究過程:
先將圖形特殊化,得出猜想,再對一般情況進行分析并加以證明.
當(dāng)點與點重合時(如圖2),請你補全圖形.由的度數(shù)為_______________,點落在_______________,容易得出與之間的數(shù)量關(guān)系為_______________
當(dāng)是的平分線時,判斷與之間的數(shù)量關(guān)系并證明
當(dāng)點在如圖3的位置時,請你畫出圖形,研究三點是否在以為圓心的同一個圓上,寫出你的猜想并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,為⊙的直徑,,為圓上的兩點,,弦,相交于點,
(1)求證:
(2)若,,求⊙的半徑;
(3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點作交⊙于, 兩點(點在線段上),求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過點A作AE⊥CD,AE分別與CD、CB相交于點H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績,制作成直方圖(如圖).
(1)分?jǐn)?shù)段在______范圍的人數(shù)最多;
(2)全校共有________人參加比賽;
(3)學(xué)校決定選派本次比賽成績最好的3人參加南寧市中學(xué)生環(huán)保演講決賽,并為參賽選手準(zhǔn)備了紅、藍、白顏色的上衣各1件和2條白色、1條藍色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】ABCD中,對角線AC、BD相交于點O,E是邊AB上的一個動點(不與A、B重合),連接EO并延長,交CD于點F,連接AF,CE,下列四個結(jié)論中:
①對于動點E,四邊形AECF始終是平行四邊形;
②若∠ABC<90°,則至少存在一個點E,使得四邊形AECF是矩形;
③若AB>AD,則至少存在一個點E,使得四邊形AECF是菱形;
④若∠BAC=45°,則至少存在一個點E,使得四邊形AECF是正方形.
以上所有正確說法的序號是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com