科目: 來源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE、BF,交點為G.
(1)求證:AE⊥BF;
(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點Q,求sin∠BQP的值;
(3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當正方形ABCD的邊長為4時,直接寫出四邊形GHMN的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】(12分)某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫如表:
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;
(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當日零售價不變,那么零售價定為多少時,該經(jīng)銷商銷售此種蔬菜的當日利潤最大?最大利潤為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉(zhuǎn)到位置①可得到點P1,此時AP1=;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=1+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=2+;….按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點P2020為止,則AP2020=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是A邊上一點,且AE=,點F是邊BC上的任意一點,把△BEF沿EF翻折,點B的對應(yīng)點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點B和點C為圓心,大于BC的長為半徑作弧,兩弧相交于點M和N;②作直線MN,分別交邊AB,BC于點D和E,連接CD.若∠BCA=90°,AB=8,則CD的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于和,與軸交于點.
(1)求該拋物線的解析式;
(2)繞點旋轉(zhuǎn)的直線:與軸相交于點,與拋物線相交于點,且滿足時,求直線的解析式;
(3)點為拋物線上的一點,點為拋物線對稱軸上的一點,是否存在以點,,,為頂點的平行四邊形,若存在,請直接寫出點的坐標:若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,,,點是直線上一動點,點是直線上動點,點是直線上一動點,且,.
(1)如圖1,當點,,分別在,,邊上時,請你判斷線段,,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論;
(2)如圖2,當在延長線上,在延長線上,在延長線上時,(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請判斷線段,,之間有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(3)若,當時,請直接寫出的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】鄂爾多斯市某百貨商場銷售某一熱銷商品A,其進貨和銷售情況如下:用16000元購進一批該熱銷商品A,上市后很快銷售一空,根據(jù)市場需求情況,該商場又用7500元購進第二批該商品,已知第二批所購件數(shù)是第一批所購件數(shù)的一半,且每件商品的進價比第一批的進價少10元.
(1)求商場第二批商品A的進價;
(2)商場同時銷售另一種熱銷商品B,已知商品B的進價與第二批商品A的進價相同,且最初銷售價為165元,每天能賣出125件,經(jīng)市場銷售發(fā)現(xiàn),若售價每上漲1元,其每天銷售量就減少5件,問商場該如何定售價,每天才能獲得最大利潤?并求出每天的最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠AOB=90°,∠OAB=30°,反比例函數(shù)的圖象過點,反比例函數(shù)的圖象過點A
(1)求和的值.
(2)過點B作BC∥x軸,與雙曲線交于點C,求△OAC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com