科目: 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數(shù)據(jù)(參與問卷調查的每名學生只能選擇其中一項).并根據(jù)調查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);
(3)若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ADE、∠CDF分別交BC、AB于點E、F,DF交對角線AC于點M,且∠ADE=∠CDF.
(1)求證:CE=AF;
(2)連接ME,若=,AF=2,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位在疫情期間用3000元購進A、B兩種口罩1100個,購買A種口罩與購買B種口罩的費用相同,且A種口罩的單價是B種口罩單價的1.2倍;
(1)求A,B兩種口罩的單價各是多少元?
(2)若計劃用不超過7000元的資金再次購進A、B兩種口罩共2600個,已知A、B兩種口罩的進價不變,求A種口罩最多能購進多少個?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-4,0),對稱軸為直線x=-1,下列結論:
①abc>0;
②2a-b=0;
③一元二次方程ax2+bx+c=0的解是x1=-4,x2=1;
④當y>0時,-4<x<2.
其中正確的結論有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A(-1,0),B兩點,與y軸交于點C(0,3),點P是拋物線在第一象限上的一點,過點P作PH⊥x軸,垂足為H,交線段BC于點Q.
(1)求拋物線對應的函數(shù)表達式;
(2)當PQ=2QH時,求點P的坐標;
(3)當PH最大時,連接AP,AP與BC交于點D,點F是第一象限內一點,且∠AFC=45°,點G在拋物線上,直線FG、FC分別與直線PH交于點M、N.當三角形ABD相似三角形FMN時,求點G的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量q(輛/小時)指單位時間內通過道路指定斷面的車輛數(shù);速度v(千米/小時)指通過道路指定斷面的車輛速度,密度k(輛/千米)指通過道路指定斷面單位長度內的車輛數(shù).
為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間關系的部分數(shù)據(jù)如下表:
速度v(千米/小時) | …… | 5 | 10 | 20 | 32 | 40 | 48 | …… |
流量q(輛/小時) | …… | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | …… |
(1)根據(jù)上表信息,下列三個函數(shù)關系式中,刻畫q,v關系最準確的是___________.(只填上正確答案的序號)
①q=90v+100;②q=;③q=2v2+120v.
(2)請利用(1)中選取的函數(shù)關系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?
(3)已知q,v,k滿足q=vk,請結合(1)中選取的函數(shù)關系式繼續(xù)解決下列問題.
①市交通運行監(jiān)控平臺顯示,當18≤v≤28該路段不會出現(xiàn)交通擁堵現(xiàn)象.試分析當車流密度k在什么范圍時,該路段不會出現(xiàn)交通擁堵現(xiàn)象;
②在理想狀態(tài)下,假設前后兩車車頭之間的距離d(米)均相等,當d=25米時請求出此時的速度v.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,D、E是以AB為直徑的圓O上兩點,且∠AED=45°,過點D作DC∥AB.
(1)請判斷直線CD與圓O的位置關系,并說明理由;
(2)若圓O的半徑為,,求AE的長;
(3)過點D作,垂足為F,直接寫出線段AE、BE、DF之間的數(shù)量關系 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某數(shù)學興趣小組為測量一顆古樹BH和教學樓CG的高,測角儀高AF=2米,先在A處測得古樹頂端H的仰角∠HFE為45°,此時教學樓頂端G恰好在視線FH上,再向前走20米到達B處(AB=20米),又測得教學樓頂端G的仰角∠GED為60°.點A、B、C三點在同一水平線上.
(1)求古樹BH的高;
(2)求教學樓CG的高.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com