科目: 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出m= ,n= ;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)根據(jù)抽樣調(diào)查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?
(4)已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”D同學最認可“網(wǎng)購”從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .在同一平面直線坐標系中
()若函數(shù)的圖象過點,函數(shù)的圖象過點,求, 的值.
()若函數(shù)的圖象經(jīng)過的頂點.
①求證: .
②當時,比較, 的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知的三個頂點的坐標分別為,,.
(1)若經(jīng)過平移后得到,已知點的坐標為,寫出頂點,的坐標;
(2)若和關于原點成中心對稱圖形,寫出各頂點的坐標;
(3)將繞著點O按順時針方向旋轉(zhuǎn)得到,寫出的各頂點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:
①四邊形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四邊形AFOE:S△COD=2:3.
其中正確的結論有_____.(填寫所有正確結論的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線BC的解析式為y=﹣x+6.
(1)求拋物線的解析式;
(2)點M為線段BC上方拋物線上的任意一點,連接MB,MC,點N為拋物線對稱軸上任意一點,當M到直線BC的距離最大時,求點M的坐標及MN+NB的最小值;
(3)在(2)中,點M到直線BC的距離最大時,連接OM交BC于點E,將原拋物線沿射線OM平移,平移后的拋物線記為y′,當y′經(jīng)過點M時,它的對稱軸與x軸的交點記為H.將△BOE繞點B逆時針旋轉(zhuǎn)60°至△BO1E1,再將△BO1E1沿著直線O1H平移,得到△B1O2E2,在平面內(nèi)是否存在點F,使以點C,H,B1,F(xiàn)為頂點的四邊形是以B1H為邊的菱形.若存在,直接寫出點B1的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列兩則材料,回答問題:
材料一:平面直角坐標系中,對點A(x1,y1),B(x2,y2)定義一種新的運算:AB=x1x2+y1y2.
例如:若A(1,2),B(3,4),則AB=1×3+2×4=11
材料二:平面直角坐標系中,過橫坐標不同的兩點A(x1,y1),B(x2,y2)的直線的斜率為kAB=.由此可以發(fā)現(xiàn)若kAB==1,則有y1-y2=x1-x2,即x1-y1=x2-y2.反之,若x1,x2,y1,y2滿足關系式x1-y1=x2-y2,則有y1-y2=x1-x2,那么kAB=═1.
(1)已知點M(-4,6),N(3,2),則MN=______,若點A,B的坐標分別為(x1,y1),(x2,y2)(x1≠x2),且滿足關系式x1+y1=x2+y2,那么kAB=______;
(2)橫坐標互不相同的三個點C,D,E滿足CD=DE,且D點的坐標為(2,2),過點D作DF∥y軸,交直線CE于點F,若DF=8,請結合圖象,求直線CE與坐標軸圍成的三角形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,過點C作CE⊥AD于點E,過AE上一點F作FH⊥CD于點H,交CE于點K,且KE=DE.
(1)若AB=13,且cosD=,求線段EF的長;
(2)如圖2,連接AC,過F作FG⊥AC于點G,連接EG,求證:CG+GF=EG.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=2x+4的圖象與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,與x軸交于點C,且點B的橫坐標為-3.
(1)求反比例函數(shù)的解析式;
(2)連接AO,求△AOC的面積;
(3)在△AOC內(nèi)(不含邊界),整點(橫縱坐標都為整數(shù)的點)共有______個.
查看答案和解析>>
科目: 來源: 題型:
【題目】在建設港珠澳大橋期間,大橋的規(guī)劃選線須經(jīng)過中華白海豚國家級自然保護區(qū)---區(qū)域A或區(qū)域B.為實現(xiàn)白海豚“零傷亡,不搬家”的目標,需合理安排施工時間和地點,為此,海豚觀察員在相同條件下連續(xù)出海20天,在區(qū)域A,B兩地對中華白海豚的蹤跡進行了觀測和統(tǒng)計,過程如下,請補充完整.(單位:頭)
(收集數(shù)據(jù))
連續(xù)20天觀察不同中華白海豚每天在區(qū)域A,區(qū)域B出現(xiàn)的數(shù)目情況,得到統(tǒng)計結果,并按從小到大的順序排列如下:
區(qū)域A 0 1 3 4 5 6 6 6 7 8 8 9 11 14 15 15 17 23 25 30
B 1 1 3 4 6 6 89 11 12 14 15 16 16 16 17 22 25 26 35
(整理、描述數(shù)據(jù))
(1)按如下數(shù)段整理、描述這兩組數(shù)據(jù),請補充完整:
海豚數(shù)x | 0≤x≤7 | 8≤x≤14 | 15≤x≤21 | 22≤x≤28 | 29≤x≤35 |
區(qū)域A | 9 | 5 | 3 | ______ | ______ |
區(qū)域B | 6 | 5 | 5 | 3 | 1 |
(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù),眾數(shù)如下表所示
觀測點 | 極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
區(qū)域A | a | 10.65 | b | c |
區(qū)域B | 34 | 13.15 | 13 | 16 |
請?zhí)羁眨荷媳碇校瑯O差a=______,中位數(shù)b=______,眾數(shù)c=______;
(3)規(guī)劃者們選擇了區(qū)域A為大橋的必經(jīng)地,為減少施工對白海豚的影響,合理安排施工時間,估計在接下來的200天施工期內(nèi),區(qū)域A大約有多少天中華白海豚出現(xiàn)的數(shù)目在22≤x≤35的范圍內(nèi)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com